Identifikasi Senyawa Aktif Pala (Myristica fragrans) sebagai Terapi Komplementer Antihipertensi melalui Penghambatan Reseptor ACE: Sebuah Studi Penambatan Molekuler

Identification of Acrive Compounds from Nutmeg (Myristica fragrans) as Complementary Antihypertensive Therapies Through ACE receptor Inhibition: A Molecular Docking Study

Penulis

Kata Kunci:

Antihipertensi, Myristica fragrans, Catechin, Beta-caryophyllene, Alpha-bergamotene

Abstrak

Hipertensi merupakan salah satu masalah kesehatan terbesar yang menjadi penyebab utama kematian di seluruh dunia. Angiotensin converting enzyme inhibitor (ACE-I) sebagai obat antihipertensi yang umum diketahui memiliki efek samping yang sering dikeluhkan. Penelitian ini bertujuan untuk mengidentifikasi senyawa potensial yang berasal dari pala (Myristica fragrans) sebagai antihipertensi dengan menggunakan studi penambatan molekular. Dua puluh tiga senyawa pala bersama dengan captopril digunakan dalam penelitian ini melalui pencarian literatur dan penyaringan daring. Senyawa dan obat pembanding diunduh melalui PubChem sementara reseptor target pada pada RCSB. Swiss ADME, ProTox-II, dan admetLab digunakan untuk mengevaluasi senyawa mirip obat dan memprediksi toksisitas senyawa. Senyawa dan captopril dilakukan penambatan molekular pada reseptor target ACE menggunakan Autodock tools 1.5.6 dan Autodock Vina serta visualisasi interaksi molekul dengan aplikasi Discovery Studio v16. Hasil penelitian menunjukkan seluruh senyawa memenuhi kriteria sebagai obat dan memiliki afinitas terhadap ACE. Catechin, beta-caryophyllene, dan alpha-bergamoten tidak toksik dan menunjukkan interaksi molekul yang kuat pada ACE dibanding dengan captopril dan senyawa lain dengan energi ikatan masing-masing -8,2, -7,3, -7,2 kkal/mol. Catechin, beta-caryophyllene, dan alpha-bergamoten berpotensi untuk dikembangkan sebagai ACE-I. Penelitian in vitro dan in vivo lebih lanjut diperlukan agar dapat dilakukan uji klinis.

Referensi

Setiati S, Alwi I, Sudoyo AW, K MS, Setiyohadi B, Syam AF, 2014. Buku Ajar Ilmu Penyakit Dalam. 6th ed. Jakarta: InternaPublishing; 2014. 2259–83 p.

Singh S, Shankar R, Singh GP. Prevalence and Associated Risk Factors of Hypertension: A Cross- Sectional Study in Urban Varanasi. Int J Hypertens. 2017;2017.

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Physiol Behav. 2016;176(1):139–48.

Kementerian Kesehatan Republik Indonesia. Laporan Nasional Riset Kesehatan Dasar. Kementerian Kesehatan RI. Jakarta; 2018.

Chowdhury MZI, Rahman M, Akter T, Akhter T, Ahmed A, Shovon MA, et al. Hypertension prevalence and its trend in Bangladesh: evidence from a systematic review and meta-analysis. Clin Hypertens. 2020;26(1).

Zhao Y, Xu C. Structure and function of angiotensin converting enzyme and its inhibitors. Shengwu Gongcheng Xuebao/Chinese J Biotechnol. 2008;24(2):171–6.

Luthfi M, Aziz S, Kusumastuti E. Rasionalitas Penggunaan ACE Inhibitor pada Penderita Hipertensi di Bagian Penyakit Dalam RSUD Kayuagung dan RSMH Palembang. Biomed J Indones. 2018;4(2):67–75.

Dicpinigaitis P V. Angiotensin Converting Enzyme Inhibitor- Induced Cough ACCP Evidence- Based Clinical Practice Guidelines. Chest J. 2006;129(1):169S-73S.

Abachi S, Bazinet L, Beaulieu L. Antihypertensive and angiotensin-i- converting enzyme (ACE)-inhibitory peptides from fish as potential cardioprotective compounds. Mar Drugs. 2019;17(11).

Wahyuni S, A. HE, Suparman N, Mardiana N. Keragaman Produksi Plasma Nutfah Pala (Myristica fragrans) di KP Cicurug. Bul Plasma Nutfah. 2016;14(2):68.

Akinboro A, Mohamed K Bin, Asmawi MZ, Sulaiman SF, Sofiman OA. Antioxidants in aqueous extract of Myristica fragrans (Houtt.) suppress mitosis and cyclophosphamide-induced chromosomal aberrations in Allium cepa L. cells. J Zhejiang Univ Sci B. 2011;12(11):915–22.

Ansory HM, Sari EN, Nilawati A, Handayani S, Aznam N. Sunscreen and Antioxidant Potential of Myristicin in Nutmeg Essential Oils (Myristica fragrans). 2020;26(Table 6):138–42.

Muchtaridi M, Fauzi M, Ikram NKK, Gazzali AM, Wahab HA. Natural Flavonoids as Potential for Anti- SARS-CoV-2. MDPI. 2020;2(August 2020):20.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64(SUPPL.):4–17.

Bhat V, Chatterjee J. The Use of In Silico Tools for the Toxicity Prediction of Potential Inhibitors of SARS-CoV-2. Altern Lab Anim. 2021;49(1–2):22–32.

Forli S, Huey R, Pique ME, Sanner M, Goodsell DS, Arthur J. Computational protein-ligand Forli S, Huey R, Pique ME, Sanner M, Goodsell DS, Arthur J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905–19

Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–63.

Banerjee P, Dehnbostel FO, Preissner R. Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem. 2018;6(AUG):1–11.

Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42(W1):53–8.

Arwansyah, Ambarsari L, Sumaryada TI. Simulasi Docking Senyawa Kurkumin Dan Analognya Sebagai Inhibitor Enzim 12-Lipoksigenase. Curr Biochem. 2014;1(in silico):36– 9.

Zafar A, Ahmad S, Rizvi A, Ahmad M. Novel non-peptide inhibitors against SmCL1 of Schistosoma mansoni: In silico elucidation, implications and evaluation via knowledge based drug discovery. PLoS One. 2015;10(5):1–33.

Jin J, Chen B, Zhan X, Zhou Z, Liu H, Dong Y. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PLoS One [Internet]. 2021;16(6 June). Available from: http://dx.doi.org/10.1371/journal.pon e.0252508

Cozier GE, Schwager SL, Sharma RK, Chibale K, Sturrock ED, Acharya KR. Crystal structures of sampatrilat and sampatrilat-Asp in complex with human ACE – a molecular basis for domain selectivity. FEBS J. 2018;285(8):1477–90.

Ali Y, Seong SH, Jung HA, Choi JS. Angiotensin-I-Converting Enzyme Inhibitory Activity of Coumarins from Angelica decursiva.

Ali A, Baby B, Soman SS, Vijayan R. Molecular insight in the interaction of hemorphin and its targets. Sci Rep [Internet]. 2019;9(1):1–16. Available from: http://dx.doi.org/10.1038/s41598- 019-50619-w

Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Molecular docking: current advances and challenges. TIP Rev Espec en Ciencias Químico-Biológicas. 2018;21:65–87.

Trott,O., Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2019;31(2):455–61.

Dimmock & Lawlor. BDDCS, the Rule of 5 and Drugability. Physiol Behav. 2017;176(12):139–48.

Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018;23(8):1DUMMY.

Macchiagodena M, Pagliai M, Procacci P. Inhibition of the Main Protease 3CL-pro of the Coronavirus Disease 19 via Structure-Based Ligand Design and Molecular Modeling. 2020;1–28. Available from: http://arxiv.org/abs/2002.09937

G?owacki ED, Irimia-Vladu M, Bauer S, Sariciftci NS. Hydrogen- bonds in molecular solids-from biological systems to organic electronics. J Mater Chem B. 2013;1(31):3742–53.

Varma AK, Patil R, Das S, Stanley A, Yadav L, Sudhakar A. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of Drug- Designing. PLoS One. 2010;5(8).

Francomano F, Caruso A, Barbarossa A, Fazio A, Torre C La, Ceramella J, et al. ?-Caryophyllene A Sesquiterpene with Countless.pdf. Appl Sci. 2019;9:5420.

Adefegha SA, Olasehinde TA, Oboh G. Essential oil composition, antioxidant, antidiabetic and antihypertensive properties of two Afromomum species. J Oleo Sci. 2017;66(1):51–63.

Ismaeel RO, Usman LA. Chemical Composition and Antioxidant Potential of Leaf and Rhizome Essential Oils from Zingiber officinale Roscoe var. colmondeleyi F.M.Bailey Growing in Nigeria. Chem Africa. 2021;(0123456789).

Oboh G, Olasehinde TA, Ademosun AO. Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon. Int J Food Prop. 2017;20(1):S586–94.

Isemura M. Catechin in human health and disease. Molecules. 2019;24(3).

Hettihewa SK, Hemar Y, Vasantha Rupasinghe HP. Flavonoid-rich extract of actinidia macrosperma (a wild kiwifruit) inhibits angiotensin- converting enzyme in vitro. Foods. 2018;7(9):4–11.

File Tambahan

Diterbitkan

2023-05-03

Terbitan

Bagian

Articles

Cara Mengutip

Identifikasi Senyawa Aktif Pala (Myristica fragrans) sebagai Terapi Komplementer Antihipertensi melalui Penghambatan Reseptor ACE: Sebuah Studi Penambatan Molekuler: Identification of Acrive Compounds from Nutmeg (Myristica fragrans) as Complementary Antihypertensive Therapies Through ACE receptor Inhibition: A Molecular Docking Study. (2023). Jurnal Sains Dan Kesehatan, 5(3), 339-349. https://jsk.ff.unmul.ac.id/index.php/JSK/article/view/407