Review: Peptida Bioaktif Kasein Susu Kambing sebagai Sumber Antimikroba dan Antioksidan
Review: Bioactive Peptide from Goat’s Milk Casein as a Source of Antimicrobial and Antioxidant
Keywords:
Peptida bioaktif, Kasein, Susu kambing, Antimikroba, AntioksidanAbstract
References
R. Susanti and E. Hidayat, “Profil Protein Susu dan Produk Olahannya,” J. MIPA, vol. 39, no. 2, pp. 98–106, 2016.
D. Lestari and E. Giordan, “Casein Goat’s Milk Bioactive Peptides as Antibacterial Agent Against Staphylococcus aureus Diana,” J. Agroindustri Halal, vol. 6, no. 1, pp. 28–38, 2020.
H. S. Widodo, T. W. Murti, A. Agus, and W. Widodo, “Mengidentifikasi Peptida Bioaktif Angiotensin Converting Enzyme-inhibitor (ACEi) dari Kasein ? Susu Kambing dengan Polimorfismenya Melalui Teknik In Silico,” J. Apl. Teknol. Pangan, vol. 7, no. 4, pp. 180–185, 2019.
R. Song, R. bian Wei, G. qiang Ruan, and H. yu Luo, “Isolation and identification of antioxidative peptides from peptic hydrolysates of half-fin anchovy (Setipinna taty),” Lwt, vol. 60, no. 1, pp. 221–229, 2015.
N. Herlina, A. Zaaenal Mustopa, R. Sari Surachma, L. Triratna, G. Kartina, and W. Nurul Alfisyahrin, “Aktivitas antibakteri dan antioksidan peptida susu kambing hasil hidrolisis dengan protease Lactobacillus plantarum S31 (Antibacterial and antioxidant activity of goat milk peptide hydrolyzed with protease of Lactobacillus plantarum S31),” J. Biol. Indones., vol. 15, no. 1, pp. 23–31, 2019.
A. . Petchey, “weaned on to a cereal based diet at about 5 weeks . Satisfactory milk substi- tutes for calves are based generally upon skim milk powder and added vegetable or animal fat . Less frequently t h e y contain whey powder . When milk is ingested by the calf it,” Anim. Feed Sci. Technol., vol. 7, pp. 141–146, 1982.
J. D. Buckley, R. L. Thomson, A. M. Coates, P. R. C. Howe, M. O. DeNichilo, and M. K. Rowney, “Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise,” J. Sci. Med. Sport, vol. 13, no. 1, pp. 178–181, 2010.
S. F. Gauthier and Y. Pouliot, “Functional and Biological Properties of Peptides Obtained By Enzymatic Hydrolysis of Whey Proteins,” J. Dairy Sci., vol. 86, no. SUPPL. 1, pp. E78–E87, 2003.
R. Nagpal et al., “Bioactive peptides derived from milk proteins and their health beneficial potentials: An update,” Food Funct., vol. 2, no. 1, pp. 18–27, 2011.
I. López Expósito and I. Recio, “Antibacterial activity of peptides and folding variants from milk proteins,” Int. Dairy J., vol. 16, no. 11, pp. 1294–1305, 2006.
G. Shu, X. Shi, L. Chen, J. Kou, J. Meng, and H. Chen, “Antioxidant peptides from goat milk fermented by lactobacillus casei l61: Preparation, optimization, and stability evaluation in simulated gastrointestinal fluid,” Nutrients, vol. 10, no. 6, 2018.
H. R. Ibrahim, A. S. Ahmed, and T. Miyata, “Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk,” J. Adv. Res., vol. 8, no. 1, pp. 63–71, 2017.
H. Gong et al., “Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells,” J. Dairy Sci., vol. 103, no. 6, pp. 4907–4918, 2020.
M. A. Manso and R. López-Fandiño, “Angiotensin I converting enzyme - Inhibitory activity of bovine, ovine, and caprine ?-casein macropeptides and their tryptic hydrolysates,” J. Food Prot., vol. 66, no. 9, pp. 1686–1692, 2003.
A. Sánchez and A. Vázquez, “Bioactive peptides: A review,” Int. J. Bioautomation, vol. 15, no. 4, pp. 223–250, 2017.
D. Kumar, M. K. Chatli, R. Singh, N. Mehta, and P. Kumar, “Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions,” Small Rumin. Res., vol. 139, pp. 20–25, 2016.
Y. W. Park, Bioactive Components in Milk and Dairy Products. Ames: Wiley-Blackwell, 2009.
R. J. Fitzgerald and H. Meisel, “Milk Protein Hydrolysates and Bioactive Peptides,” Adv. Dairy Chem. Proteins, pp. 675–698, 2003.
H. Korhonen and A. Pihlanto, “Food-derived Bioactive Peptides - Opportunities for Designing Future Foods,” Curr. Pharm. Des., vol. 9, no. 16, pp. 1297–1308, 2005.
D. Agyei and M. K. Danquah, “Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides,” Biotechnol. Adv., vol. 29, no. 3, pp. 272–277, 2011.
D. Agyei, C. M. Ongkudon, C. Y. Wei, A. S. Chan, and M. K. Danquah, “Bioprocess challenges to the isolation and purification of bioactive peptides,” Food Bioprod. Process., vol. 98, pp. 244–256, 2016.
F. Tonolo et al., “Identification of new peptides from fermented milk showing antioxidant properties: Mechanism of action,” Antioxidants, vol. 9, no. 2, pp. 1–22, 2020.
T. C. E. S. Nascimento et al., “Antarctic fungus proteases generate bioactive peptides from caseinate,” Food Res. Int., vol. 139, p. 109944, 2021.
H. Korhonen, “Milk-derived bioactive peptides: From science to applications,” J. Funct. Foods, vol. 1, no. 2, pp. 177–187, 2009.
Y. W. Park and M. S. Nam, “Bioactive Peptides in Milk and Dairy Products: A Review,” Korean J. Food Sci. Anim. Resour., vol. 35, no. 6, pp. 831–840, 2015.
B. Dziuba and M. Dziuba, “Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects,” Acta Sci. Pol. Technol. Aliment., vol. 13, no. 1, pp. 5–25, 2014.
A. B. Nongonierma and R. J. FitzGerald, “Bioactive properties of milk proteins in humans: A review,” Peptides, vol. 73, pp. 20–34, 2015.
A. Pihlanto, “Antioxidative peptides derived from milk proteins,” Int. Dairy J., vol. 16, no. 11, pp. 1306–1314, 2006.
F. Tonolo et al., “Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway,” J. Funct. Foods, vol. 64, no. October, p. 103696, 2020.
S. Guha, H. Sharma, G. K. Deshwal, and P. S. Rao, “A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species,” Food Prod. Process. Nutr., vol. 3, no. 1, 2021.
[A. M. Michaelidou, “Factors influencing nutritional and health profile of milk and milk products,” Small Rumin. Res., vol. 79, no. 1, pp. 42–50, 2008.
D. Marletta et al., “Casein polymorphism in goat ’ s milk To cite this version?: HAL Id?: hal-00895642 Casein polymorphism in goat ’ s milk,” Le Lait, INRA Ed., vol. 87, no. 6, pp. 491–504, 2007.
M. S. Sansi, D. Iram, S. Zanab, A. K. Vij, S., Puniya, and S. Singh, A., & Meena, “Antimicrobial bioactive peptides from goat Milk proteins: In silico prediction and analysis,” J. Food Biochem., vol. 46, no. 10, 2022.
G. Moatsou, A. Hatzinaki, M. Samolada, and E. Anifantakis, “Major whey proteins in ovine and caprine acid wheys from indigenous greek breeds,” Int. Dairy J., vol. 15, no. 2, pp. 123–131, 2005.
H. Korhonen and A. Pihlanto, “Bioactive Peptides from Food Proteins,” Handb. Food Prod. Manuf., vol. 1, pp. 1–37, 2007.
E. Kusumaningtyas, “Peran peptida susu sebagai antimikroba untuk meningkatkan kesehatan,” Wartazoa, vol. 23, no. 2, pp. 63–75, 2013.
E. Kusumaningtyas, R. Widiastuti, H. Dewantari Kusumaningrum, and M. Thenawidjaja Suhartono, “Aktivitas Antibakteri Dan Antioksidan Hidrolisat Hasil Hidrolisis Protein Susu Kambing Dengan Ekstrak Kasar Bromelin,” J. Teknol. dan Ind. Pangan, vol. 26, no. 2, pp. 179–188, 2015.
A. Dullius, M. I. Goettert, and C. F. V. de Souza, “Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up,” J. Funct. Foods, vol. 42, no. August 2017, pp. 58–74, 2018.
B. Wang, N. Xie, and B. Li, “Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review,” J. Food Biochem., vol. 43, no. 1, pp. 1–6, 2019.
M. Simmaco, G. Mignogna, and D. Barra, “Antimicrobial peptides from amphibian skin: What do they tell us?,” Biopolymers, vol. 47, no. 6, pp. 435–450, 1998.
Michael R. Yeaman and N. Y. Yount, “Mechanisms of Antimicrobial Peptide Action and Resistance,” Pharmacol. Rev., vol. 55, no. 1, pp. 453–499, 2003.
D. Clare, G. Catignani, and H. Swaisgood, “Biodefense Properties of Milk: The Role of Antimicrobial Proteins and Peptides,” Curr. Pharm. Des., vol. 9, no. 16, pp. 1239–1255, 2005.
R. Floris, I. Recio, B. Berkhout, and S. Visser, “Antibacterial and Antiviral Effects of Milk Proteins and Derivatives Thereof,” Curr. Pharm. Des., vol. 9, no. 16, pp. 1257–1275, 2005.
A. Pellegrini, “Antimicrobial Peptides from Food Proteins,” Curr. Pharm. Des., vol. 9, no. 16, pp. 1225–1238, 2005.
M. Gobbetti, F. Minervini, and C. G. Rizzello, “Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides,” Int. J. Dairy Technol., vol. 57, no. 2–3, pp. 173–188, 2004.
M. Hayes, R. P. Ross, G. F. Fitzgerald, C. Hill, and C. Stanton, “Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026,” Appl. Environ. Microbiol., vol. 72, no. 3, pp. 2260–2264, 2006.
P. Lestari and Suyata, “Antibacterial activity of hydrolysate protein from Etawa goat milk hydrolysed by crude extract bromelain,” IOP Conf. Ser. Mater. Sci. Eng., vol. 509, no. 1, 2019.
F. B. Holetz et al., “Screening of Some Plants Used in the Brazilian Folk Medicine for the Treatment of Infectious Disease,” Mem Inst Oswaldo Cruz, vol. 97, no. 7, pp. 1027–1031, 2002.
E. Kusumaningtyas, R. Widiastuti, H. D. Kusumaningrum, and M. T. Suhartono, “Antimicrobial and antioxidative activities of peptides from goat milk hydrolyzed with various protease,” J. Ilmu Ternak dan Vet., vol. 20, no. 3, pp. 175–183, 2015.
M. Esmaeilpour, M. R. Ehsani, M. Aminlari, S. Shekarforoush, and E. Hoseini, “Antimicrobial activity of peptides derived from enzymatic hydrolysis of goat milk caseins,” Comp. Clin. Path., vol. 25, no. 3, pp. 599–605, 2016.
D. Lestari and V. V. Soesilo, “Aktivitas Antibakteri Peptida Kasein Susu Kambing Hidrolisis oleh Papain terhadap Pseudomonas aeruginosa,” J. Ilmu Pangan dan Has. Pertan., vol. 1, no. 2, pp. 81–92, 2017.
G. Robitaille, C. Lapointe, D. Leclerc, and M. Britten, “Effect of pepsin-treated bovine and goat caseinomacropeptide on Escherichia coli and Lactobacillus rhamnosus in acidic conditions,” J. Dairy Sci., vol. 95, no. 1, pp. 1–8, 2012.
Y. Ma, Y. Hou, B. Han, K. Xie, L. Zhang, and P. Zhou, “Peptidome comparison following gastrointestinal digesta of bovine versus caprine milk serum,” J. Dairy Sci., vol. 104, no. 1, pp. 47–60, 2021.
J. Zhao, C. Zhao, G. Liang, M. Zhang, and J. Zheng, “Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities,” J. Chem. Inf. Model., vol. 53, no. 12, pp. 3280–3296, 2013.
C. F. Ajibola, J. B. Fashakin, T. N. Fagbemi, and R. E. Aluko, “Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions,” Int. J. Mol. Sci., vol. 12, no. 10, pp. 6685–6702, 2011.
H. Yang et al., “Antioxidant peptidomics reveals novel skin antioxidant system,” Mol. Cell. Proteomics, vol. 8, no. 3, pp. 571–583, 2009.
M. R. Zanutto-Elgui et al., “Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases,” Food Chem., vol. 278, pp. 823–831, 2019.
A. S. Ahmed, T. El-Bassiony, L. M. Elmalt, and H. R. Ibrahim, “Identification of potent antioxidant bioactive peptides from goat milk proteins,” Food Res. Int., vol. 74, pp. 80–88, 2015.
B. H. Sarmadi and A. Ismail, “Antioxidative peptides from food proteins: A review,” Peptides, vol. 31, no. 10, pp. 1949–1956, 2010.
A. Dávalos, M. Miguel, B. Bartolomé, and R. López-Fandiño, “Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis,” J. Food Prot., vol. 67, no. 9, pp. 1939–1944, 2004.
B. Li, F. Chen, X. Wang, B. Ji, and Y. Wu, “Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry,” Food Chem., vol. 102, no. 4, pp. 1135–1143, 2007.
E. Mendis, N. Rajapakse, and S. K. Kim, “Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate,” J. Agric. Food Chem., vol. 53, no. 3, pp. 581–587, 2005.
I. Alli, M. Okoniewska, B. F. Gibbs, and Y. Konishi, “Identification of peptides in Cheddar cheese by electrospray ionization mass spectrometry,” Int. Dairy J., vol. 8, no. 7, pp. 643–649, 1998.
V. S. Bezerra, J. F. Campos, R. A. da Silva, T. S. Porto, J. L. de Lima Filho, and A. L. F. Porto, “Biotechnological richness of the northeastern semi-arid region: Antioxidant activity of casein hydrolysates from Moxotó goat milk (Capra hircus Linnaeus, 1758) obtained by papain action,” Food Sci. Technol., vol. 33, no. 3, pp. 513–520, 2013.
M. Miguel, M. M. Contreras, I. Recio, and A. Aleixandre, “ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate,” Food Chem., vol. 112, no. 1, pp. 211–214, 2009.
Z. Li, A. Jiang, T. Yue, J. Wang, Y. Wang, and J. Su, “Purification and identification of five novel antioxidant peptides from goat milk casein hydrolysates,” J. Dairy Sci., vol. 96, no. 7, pp. 4242–4251, 2013.
C. De Gobba, F. J. Espejo-Carpio, L. H. Skibsted, and J. Otte, “Antioxidant peptides from goat milk protein fractions hydrolysed by two commercial proteases,” Int. Dairy J., vol. 39, no. 1, pp. 28–40, 2014.
D. Doucet, S. F. Gauthier, D. E. Otter, and E. A. Foegeding, “Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: Comparison with the plastein reaction and characterization of interactions,” J. Agric. Food Chem., vol. 51, no. 20, pp. 6036–6042, 2003.
I. Gülçin, “Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa,” Amino Acids, vol. 32, no. 3, pp. 431–438, 2007.
H. Guo, Y. Kouzuma, and M. Yonekura, “Structures and properties of antioxidative peptides derived from royal jelly protein,” Food Chem., vol. 113, no. 1, pp. 238–245, 2009.
R. L. Prior, X. Wu, and K. Schaich, “Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements,” J. Agric. Food Chem., vol. 53, no. 10, pp. 4290–4302, 2005.
D. J. Daroit et al., “Physicochemical properties and biological activities of ovine caseinate hydrolysates,” Dairy Sci. Technol., vol. 92, no. 4, pp. 335–351, 2012.
Q. Sun, H. Shen, and Y. Luo, “Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin,” J. Food Sci. Technol., vol. 48, no. 1, pp. 53–60, 2011.
P. L. Leclerc, S. F. Gauthier, H. Bachelard, M. Santure, and D. Roy, “Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus,” Int. Dairy J., vol. 12, no. 12, pp. 995–1004, 2002.
A. Parrella et al., “Antioxidant properties of different milk fermented with lactic acid bacteria and yeast,” Int. J. Food Sci. Technol., vol. 47, no. 12, pp. 2493–2502, 2012.
Shuwen Zhang, “Antioxidative activity of lactic acid bacteria in yogurt,” African J. Microbiol. Res., vol. 5, no. 29, pp. 5194–5201, 2011.
S. Jain, H. Yadav, and P. Ravindra Sinha, “Antioxidant and cholesterol assimilation activities of selected lactobacilli and lactococci cultures,” J. Dairy Res., vol. 76, no. 4, pp. 385–391, 2009.
K. W. Skrzypczak et al., “Antioxidative properties of milk protein preparations fermented by Polish strains of Lactobacillus Helveticus,” Acta Sci. Pol. Technol. Aliment., vol. 16, no. 2, pp. 199–207, 2017.
L. You, M. Zhao, J. M. Regenstein, and J. Ren, “Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion,” Food Chem., vol. 120, no. 3, pp. 810–816, 2010.
C. G. Rizzello, I. Losito, M. Gobbetti, T. Carbonara, M. D. De Bari, and P. G. Zambonin, “Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties,” J. Dairy Sci., vol. 88, no. 7, pp. 2348–2360, 2005.
J. Á. Gómez-Ruiz, M. Ramos, and I. Recio, “Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques,” Electrophoresis, vol. 28, no. 22, pp. 4202–4211, 2007.
B. J. Muhialdin and H. L. Algboory, “Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum,” PharmaNutrition, vol. 6, no. 2, pp. 69–73, 2018.
M. Homayouni-Tabrizi, A. Asoodeh, and M. Soltani, “Cytotoxic and antioxidant capacity of camel milk peptides: Effects of isolated peptide on superoxide dismutase and catalase gene expression,” J. Food Drug Anal., vol. 25, no. 3, pp. 567–575, 2017.
H. R. Ibrahim, H. Isono, and T. Miyata, “Potential antioxidant bioactive peptides from camel milk proteins,” Anim. Nutr., vol. 4, no. 3, pp. 273–280, 2018.
Z. Jrad et al., “Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-converting enzyme inhibitory activities of camel colostrum and milk proteins,” Dairy Sci. Technol., vol. 94, no. 3, pp. 205–224, 2014.
M. Aspri, G. Leni, G. Galaverna, and P. Papademas, “Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion,” Food Chem., vol. 268, pp. 476–484, 2018.
D. Kumar, M. K. Chatli, R. Singh, N. Mehta, and P. Kumar, “Enzymatic hydrolysis of camel milk casein and its antioxidant properties,” Dairy Sci. Technol., vol. 96, no. 3, pp. 391–404, 2016.
F. Tidona et al., “Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes,” Int. Dairy J., vol. 21, no. 3, pp. 158–165, 2011.
S. Tanabe, N. Isobe, E. Miyauchi, S. Kobayashi, M. Suzuki, and M. Oda, “Identification of a peptide in enzymatic hydrolyzate of cheese that inhibits ovalbumin permeation in Caco-2 cells,” J. Agric. Food Chem., vol. 54, no. 18, pp. 6904–6908, 2006.
C. Bao, H. Chen, L. Chen, J. Cao, and J. Meng, “Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K,” Acta Univ. Cibiniensis. Ser. E Food Technol., vol. 20, no. 1, pp. 77–84, 2016.
F. Minervini, F. Algaron, C. G. Rizzello, P. F. Fox, V. Monnet, and M. Gobbetti, “Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species,” Appl. Environ. Microbiol., vol. 69, no. 9, pp. 5297–5305, 2003.
A. Geerlings et al., “Identification and characterization of novel angiotensin-converting enzyme inhibitors obtained from goat milk,” J. Dairy Sci., vol. 89, no. 9, pp. 3326–3335, 2006.
L. Chen, Q. Zhang, Z. Ji, G. Shu, and H. Chen, “Production and fermentation characteristics of angiotensin-I-converting enzyme inhibitory peptides of goat milk fermented by a novel wild Lactobacillus plantarum 69,” Lwt, vol. 91, pp. 532–540, 2018.
F. J. Espejo-Carpio, R. Pérez-Gálvez, M. Del Carmen Almécija, A. Guadix, and E. M. Guadix, “Production of goat milk protein hydrolysate enriched in ACE-inhibitory peptides by ultrafiltration,” J. Dairy Res., vol. 81, no. 4, pp. 385–393, 2014.
T. M. Fakih and M. L. Dewi, “Interaksi Molekuler Inhibitor Dipeptidyl Peptidase-Iv ( Dpp-Iv ) Dari Protein Susu Kambing Secara in Silico Sebagai Kandidat Antidiabetes Molecular Interactions of Dipeptidyl Peptidase-Iv ( Dpp-Iv ) Inhibitors From Protein of Goat Milk Through in Silico a,” Media Farm., vol. 17, no. 1, pp. 13–24, 2020.
E. Haque and R. Chand, “Antihypertensive and antimicrobial bioactive peptides from milk proteins,” Eur. Food Res. Technol., vol. 227, no. 1, pp. 7–15, 2008.
K. J. Lee, S. B. Kim, J. S. Ryu, H. S. Shin, and J. W. Lim, “Separation and purification of angiotensin converting enzyme inhibitory peptides derived from goat’s milk casein hydrolysates,” Asian-Australasian J. Anim. Sci., vol. 18, no. 5, pp. 741–746, 2005.
L. Wang et al., “Therapeutic peptides: current applications and future directions,” Signal Transduct. Target. Ther., vol. 7, no. 1, 2022.
D. J. Craik, D. P. Fairlie, S. Liras, and D. Price, “The Future of Peptide-based Drugs,” Chem. Biol. Drug Des., vol. 81, no. 1, pp. 136–147, 2013.
K. Fosgerau and T. Hoffmann, “Peptide therapeutics: Current status and future directions,” Drug Discov. Today, vol. 20, no. 1, pp. 122–128, 2015.
Downloads
Published
Issue
Section
How to Cite
Most read articles by the same author(s)
- Maryam Jamila Arief, Fariani Fariani, Muhammad Irsal, A. Mumtihannah Mursyid, Formulasi dan Evaluasi Serum Gigi Ekstrak Etanol Siwak (Salvadora persica L.) , Jurnal Sains dan Kesehatan: Vol. 5 No. 2 (2023): J. Sains Kes.