Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit
DOI:
https://doi.org/10.30872/jsk.v6i2.942Keywords:
Kratom, Mitragyna speciosa, COX-2 inhibitor, natural analgesic, acute toxicity, central nervous system stimulantAbstract
References
1. Akinmoladun, A. C., Adefegha, S. A., & Oboh, G. (2022). Flavonoids as modulators of cyclooxygenase-2 (COX-2) and NF-κB pathways: therapeutic perspectives in inflammation and cancer. Biomedicine & Pharmacotherapy, 151, 113138.
2. Ali, Z., Demir, M., & Khan, I. A. (2021). Chemical characterization and pharmacological potential of Mitragyna speciosa (kratom) alkaloids. Journal of Natural Products, 84(3), 861–875.
3. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042
4. Armitage, E. G., & Wilson, I. D. (2021). Metabolomic profiling in natural product pharmacology: assessing plant-based drug candidates. Pharmacological Research, 170, 105733.
5. Ashton, M. J., & Basit, A. (2023). Toxicological safety assessment of ethnobotanical analgesics: case study on Mitragyna speciosa. Toxicology Reports, 10, 948–962.
6. Awang, A. D., et al. (2021). Comparative analysis of opioid receptor binding affinities of Mitragyna speciosa alkaloids. Frontiers in Pharmacology, 12, 676348.
7. Berkov, S., et al. (2022). Alkaloid diversity in Mitragyna speciosa and related Rubiaceae species. Phytochemistry Reviews, 21, 599–615.
8. Chear, N. J. Y., Hassan, Z., & Mansor, S. M. (2021). Inhibition of cyclooxygenase enzymes by Mitragyna speciosa alkaloids. Journal of Ethnopharmacology, 273, 113957.
9. Daly, J. W., et al. (2020). Adenosine receptor antagonism as a mechanism of psychostimulation: evidence from caffeine and kratom analogs. Neuropharmacology, 180, 108274.
10. Grundmann, O. (2017). Patterns of kratom use and health impact in the US: results from an online survey. Drug and Alcohol Dependence, 176, 63–70.
11. Hanapi, N. A., Ismail, S., & Mansor, S. M. (2022). Mitragynine suppresses proinflammatory cytokine expression in LPS-stimulated macrophages. International Immunopharmacology, 108, 108858.
12. Hassan, Z., et al. (2021). Pharmacological profile and abuse potential of kratom alkaloids: an updated review. CNS Drugs, 35(4), 403–426.
13. Heng, W. Y., et al. (2023). COX-2 selective inhibition by flavonoid-rich extracts from medicinal plants: potential analgesic development. Frontiers in Pharmacology, 14, 1184567.
14. Hiranita, T., & Obeng, S. (2021). Mitragynine-induced dopaminergic activation in the ventral tegmental area. NeuroReport, 32(5), 412–419.
15. Johnson, L. E., et al. (2022). Toxicological assessment of kratom alkaloids in rodents. Toxicology Letters, 370, 42–51.
16. Kamble, S. H., Sharma, A., & León, F. (2022). Molecular docking analysis of Mitragyna speciosa alkaloids against COX-2 enzyme. Computational Biology and Chemistry, 98, 107655.
17. Kawai, T., et al. (2022). Comparative gastrointestinal toxicity of selective and nonselective COX inhibitors. Clinical Pharmacology & Therapeutics, 112(6), 1284–1295.
18. Kruegel, A. C., & Grundmann, O. (2018). The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion. Frontiers in Pharmacology, 9, 407.
19. Kumar, R., et al. (2021). Antioxidant and anti-inflammatory potential of Mitragyna speciosa leaves. Journal of Medicinal Plants Research, 15(4), 178–186.
20. Latif, Z., & Likhitwitayawuid, K. (2023). Natural COX-2 inhibitors from tropical medicinal plants: structure–activity relationship and potential applications. Phytomedicine, 120, 155010.
21. León, F., et al. (2021). Kratom alkaloids: pharmacological diversity and metabolic pathways. Current Topics in Medicinal Chemistry, 21(13), 1152–1165.
22. Li, Y., et al. (2023). Dual COX-2 inhibition and antioxidant potential of polyphenolic plant extracts. Antioxidants, 12(4), 896.
23. Lim, J. R., & Tan, C. K. (2020). Acute and chronic toxicity assessment of kratom extract in mice. Regulatory Toxicology and Pharmacology, 116, 104753.
24. Makri, A., et al. (2024). Mitragynine as a bifunctional analgesic–stimulant: implications for chronic pain management. Pharmacological Research, 197, 106937.
25. Mansor, S. M., & Hassan, Z. (2021). Kratom pharmacokinetics and therapeutic potential. Frontiers in Pharmacology, 12, 633405.
26. Mordi, R. C., et al. (2023). Natural flavonoids as COX-2 selective inhibitors: computational and biochemical validation. Molecules, 28(5), 2134.
27. Ng, C. H., et al. (2022). Evaluation of analgesic and antipyretic activity of Mitragyna speciosa leaf extract. BMC Complementary Medicine and Therapies, 22, 78.
28. Obeng, S. (2021). Neuropharmacological evidence of kratom-induced dopamine system modulation. Journal of Psychopharmacology, 35(8), 908–916.
29. OECD. (2019). OECD Guideline for Testing of Chemicals: Acute Oral Toxicity – Fixed Dose Procedure (423). Organisation for Economic Co-operation and Development, Paris.
30. Palazzolo, D. L. (2020). Evaluating kratom safety profile and hepatotoxicity risks. Toxicology Reports, 7, 1483–1491.
31. Papoutsis, I., et al. (2021). Kratom metabolism and toxicity: insights from preclinical studies. Forensic Science International, 324, 110853.
32. Rao, P. N., & Knaus, E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. Journal of Pharmacy & Pharmaceutical Sciences, 11(2), 81s-110s. https://doi.org/10.18433/J3T886
33. Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986-1000. https://doi.org/10.1161/ATVBAHA.110.207449
34. Saingam, D., et al. (2021). Clinical implications of kratom consumption in Southeast Asia: a review. Drug Science, Policy and Law, 7, 205032452110563.
35. Singh, D., Narayanan, S., & Grundmann, O. (2023). Kratom use in pain and opioid withdrawal: pharmacology, benefits, and risks. Current Addiction Reports, 10, 127–139.
36. Smith, J. A., et al. (2022). Comparative toxicity of traditional NSAIDs and COX-2 inhibitors in rodent models. Toxicology and Applied Pharmacology, 454, 116243.
37. Tan, W., et al. (2024). Alkaloid–flavonoid synergy in kratom extract modulates inflammatory pathways. Journal of Ethnopharmacology, 319, 117055.
38. Taufiqurrahman, M., et al. (2023). Profil fitokimia dan potensi analgesik ekstrak daun kratom (Mitragyna speciosa) asal Kalimantan Timur. Jurnal Farmasi Indonesia, 9(2), 145–158.
39. Thongpraditchote, S., et al. (2022). Acute and subchronic safety evaluation of kratom extract in rats. Regulatory Toxicology and Pharmacology, 129, 105108.
40. Vane, J. R., & Botting, R. M. (2020). The mechanism of action of anti-inflammatory drugs. International Journal of Clinical Pharmacology, 56(11), 1231–1244.
41. Warner, M. L., Kaufman, N. C., & Grundmann, O. (2016). The pharmacology and toxicology of kratom: from traditional use to modern research. International Journal of Legal Medicine, 130, 127–138.
42. Yap, J. Y., et al. (2020). Binding and docking studies of kratom alkaloids to cyclooxygenase-2 enzyme. Computational Biology Journal, 17(3), 211–222.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Mentarry Bafadal, Potensi Daun Bandotan (Ageratum conyzoides L.) Terhadap Biofilm Streptococcus pyogenes , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
Similar Articles
- Nanda Puspita, Khairunnida , Efektivitas Edukasi Obat untuk Pasien Diabetes Mellitus pada Masa Pandemi Covid-19 di Puskesmas Kecamatan Cempaka Putih, Jakarta Pusat , Jurnal Sains dan Kesehatan: Vol. 4 No. 4 (2022): J. Sains Kes.
- Nurlaili Nurlaili, Ayu Maulida, Clara Theresia, Febby Anggie Sandika, Umi Hairah, Aplikasi Ekstrak Tanaman Kecombrang (Etlingera elatior) Sebagai Pengawet Alami pada Daging Ikan Nila (Oreochromis niloticus) , Jurnal Sains dan Kesehatan: Vol. 4 No. 2 (2022): J. Sains Kes.
- Arius Togodly , Faktor-Faktor yang Berpengaruh terhadap Kejadian Infeksi Saluran Pernafasan Akut (ISPA) pada Balita di Puskesmas Karubaga Kabupaten Tolikara , Jurnal Sains dan Kesehatan: Vol. 4 No. 4 (2022): J. Sains Kes.
- Flora Ramona Prakoeswa, Peranan Sel Limfosit Dalam Imunulogi: Artikel Review , Jurnal Sains dan Kesehatan: Vol. 2 No. 4 (2020): J. Sains Kes.
- Gusti Ayu Putu Laksmi Puspa Sari, Coronavirus Disease 2019 (COVID-19): A literature review , Jurnal Sains dan Kesehatan: Vol. 2 No. 4 (2020): J. Sains Kes.
- Iqlima Ayu Prestisya, Carellila Kristanto, Fikria Marfuatin Nur, Pemanfaatan Tanaman Andong Merah (Cordyline Fruticosa Linn.) dalam Formulasi Hydrogel Berbasis Starch-Gelatin Sebagai Kombinasi Polimer Alami Alternatif untuk Bentuk Sediaan Jamu , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Rani Nur Afifah, Muthia Dewi Marthilia Alim, Evaluasi Pola Pengobatan Coronavirus Disease 2019 (Covid-19) pada Ibu Hamil di Rumah Sakit Kota Samarinda , Jurnal Sains dan Kesehatan: Vol. 4 No. 6 (2022): J. Sains Kes.
- Desi Sukaeningsih, Elin Yulinah Sukandar, Atun Qowiyyah, Tanaman Famili Fabaceae yang Berpotensi sebagai Obat Herbal Antitukak Peptik , Jurnal Sains dan Kesehatan: Vol. 3 No. 3 (2021): J. Sains Kes.
- Florensya Gohao, Arwyn Weynand Nusawakan, Angkit Kinasih, Keterkaitan Antara Kejadian ISPA, Indeks Massa Tubuh (IMT), Dan Prestasi Akademis Pada Siswa Sekolah Dasar di Manokwari , Jurnal Sains dan Kesehatan: Vol. 3 No. 4 (2021): J. Sains Kes.
- Muhammad Despriansyah Romadhan, Putri Mahirah Afladhanti, Ni Made Dyah Gayatri, Identifikasi Senyawa Aktif Pala (Myristica fragrans) sebagai Terapi Komplementer Antihipertensi melalui Penghambatan Reseptor ACE: Sebuah Studi Penambatan Molekuler , Jurnal Sains dan Kesehatan: Vol. 5 No. 3 (2023): J. Sains Kes.
You may also start an advanced similarity search for this article.

