Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit

Authors

  • Fajar Presetya Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia Author https://orcid.org/0000-0002-1020-0423
  • Mentarry Bafadal Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia Author
  • Nurul Muhlisa Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia Author
  • Fikri Ramdhani Sahar Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia Author
  • Onny Ziasti Fricillia Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia Author
  • Pryenalvend Khisanta Piter Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia Author
  • Gayuk Kalih Prasesti Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia Author

DOI:

https://doi.org/10.30872/jsk.v6i2.942

Keywords:

Kratom, Mitragyna speciosa, COX-2 inhibitor, natural analgesic, acute toxicity, central nervous system stimulant

Abstract

Kratom (Mitragyna speciosa) is a tropical plant containing various bioactive alkaloids such as mitragynine, 7-hydroxymitragynine, speciogynine, and paynantheine, known for their analgesic and stimulant activities. Unlike classical opioids, kratom has been reported to possess a lower risk of dependence and may act through inhibition of non-opioid inflammatory pathways such as cyclooxygenase (COX) and Toll-like receptor 4 (TLR4). This study aimed to evaluate the inhibitory activity of kratom leaf ethanol extract on COX-1 and COX-2 enzymes, assess its acute toxicity in mice, and determine its central nervous system (CNS) stimulant potential through the natatory exhaust test. The 96% ethanol extract of kratom leaves was tested for COX-1 and COX-2 inhibition using the TMPD assay method. Acute toxicity was evaluated following OECD guideline 423 at doses ranging from 5 to 2000 mg/kg BW in female mice. The stimulant activity test was conducted using the natatory exhaust method in male mice at doses of 50, 100, and 150 mg/kg BW. Statistical analysis was performed using ANOVA followed by Tukey’s test with a 95% confidence level. The extract exhibited 74.38% inhibition of COX-2 and 2.47% inhibition of COX-1 at a concentration of 1000 ppm, yielding a selectivity ratio of 30:1. Acute toxicity testing showed an LD₅₀ > 2000 mg/kg BW, categorized as mildly toxic, with no significant organic alterations. CNS stimulant activity increased up to 280% at a dose of 150 mg/kg BW compared to the negative control. The ethanol extract of kratom leaves demonstrates potential as a selective COX-2 analgesic with CNS stimulant effects and a favorable acute safety profile. Its pharmacological mechanism likely involves COX-2 inhibition and enhanced dopaminergic transmission.

References

1. Akinmoladun, A. C., Adefegha, S. A., & Oboh, G. (2022). Flavonoids as modulators of cyclooxygenase-2 (COX-2) and NF-κB pathways: therapeutic perspectives in inflammation and cancer. Biomedicine & Pharmacotherapy, 151, 113138.

2. Ali, Z., Demir, M., & Khan, I. A. (2021). Chemical characterization and pharmacological potential of Mitragyna speciosa (kratom) alkaloids. Journal of Natural Products, 84(3), 861–875.

3. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042

4. Armitage, E. G., & Wilson, I. D. (2021). Metabolomic profiling in natural product pharmacology: assessing plant-based drug candidates. Pharmacological Research, 170, 105733.

5. Ashton, M. J., & Basit, A. (2023). Toxicological safety assessment of ethnobotanical analgesics: case study on Mitragyna speciosa. Toxicology Reports, 10, 948–962.

6. Awang, A. D., et al. (2021). Comparative analysis of opioid receptor binding affinities of Mitragyna speciosa alkaloids. Frontiers in Pharmacology, 12, 676348.

7. Berkov, S., et al. (2022). Alkaloid diversity in Mitragyna speciosa and related Rubiaceae species. Phytochemistry Reviews, 21, 599–615.

8. Chear, N. J. Y., Hassan, Z., & Mansor, S. M. (2021). Inhibition of cyclooxygenase enzymes by Mitragyna speciosa alkaloids. Journal of Ethnopharmacology, 273, 113957.

9. Daly, J. W., et al. (2020). Adenosine receptor antagonism as a mechanism of psychostimulation: evidence from caffeine and kratom analogs. Neuropharmacology, 180, 108274.

10. Grundmann, O. (2017). Patterns of kratom use and health impact in the US: results from an online survey. Drug and Alcohol Dependence, 176, 63–70.

11. Hanapi, N. A., Ismail, S., & Mansor, S. M. (2022). Mitragynine suppresses proinflammatory cytokine expression in LPS-stimulated macrophages. International Immunopharmacology, 108, 108858.

12. Hassan, Z., et al. (2021). Pharmacological profile and abuse potential of kratom alkaloids: an updated review. CNS Drugs, 35(4), 403–426.

13. Heng, W. Y., et al. (2023). COX-2 selective inhibition by flavonoid-rich extracts from medicinal plants: potential analgesic development. Frontiers in Pharmacology, 14, 1184567.

14. Hiranita, T., & Obeng, S. (2021). Mitragynine-induced dopaminergic activation in the ventral tegmental area. NeuroReport, 32(5), 412–419.

15. Johnson, L. E., et al. (2022). Toxicological assessment of kratom alkaloids in rodents. Toxicology Letters, 370, 42–51.

16. Kamble, S. H., Sharma, A., & León, F. (2022). Molecular docking analysis of Mitragyna speciosa alkaloids against COX-2 enzyme. Computational Biology and Chemistry, 98, 107655.

17. Kawai, T., et al. (2022). Comparative gastrointestinal toxicity of selective and nonselective COX inhibitors. Clinical Pharmacology & Therapeutics, 112(6), 1284–1295.

18. Kruegel, A. C., & Grundmann, O. (2018). The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion. Frontiers in Pharmacology, 9, 407.

19. Kumar, R., et al. (2021). Antioxidant and anti-inflammatory potential of Mitragyna speciosa leaves. Journal of Medicinal Plants Research, 15(4), 178–186.

20. Latif, Z., & Likhitwitayawuid, K. (2023). Natural COX-2 inhibitors from tropical medicinal plants: structure–activity relationship and potential applications. Phytomedicine, 120, 155010.

21. León, F., et al. (2021). Kratom alkaloids: pharmacological diversity and metabolic pathways. Current Topics in Medicinal Chemistry, 21(13), 1152–1165.

22. Li, Y., et al. (2023). Dual COX-2 inhibition and antioxidant potential of polyphenolic plant extracts. Antioxidants, 12(4), 896.

23. Lim, J. R., & Tan, C. K. (2020). Acute and chronic toxicity assessment of kratom extract in mice. Regulatory Toxicology and Pharmacology, 116, 104753.

24. Makri, A., et al. (2024). Mitragynine as a bifunctional analgesic–stimulant: implications for chronic pain management. Pharmacological Research, 197, 106937.

25. Mansor, S. M., & Hassan, Z. (2021). Kratom pharmacokinetics and therapeutic potential. Frontiers in Pharmacology, 12, 633405.

26. Mordi, R. C., et al. (2023). Natural flavonoids as COX-2 selective inhibitors: computational and biochemical validation. Molecules, 28(5), 2134.

27. Ng, C. H., et al. (2022). Evaluation of analgesic and antipyretic activity of Mitragyna speciosa leaf extract. BMC Complementary Medicine and Therapies, 22, 78.

28. Obeng, S. (2021). Neuropharmacological evidence of kratom-induced dopamine system modulation. Journal of Psychopharmacology, 35(8), 908–916.

29. OECD. (2019). OECD Guideline for Testing of Chemicals: Acute Oral Toxicity – Fixed Dose Procedure (423). Organisation for Economic Co-operation and Development, Paris.

30. Palazzolo, D. L. (2020). Evaluating kratom safety profile and hepatotoxicity risks. Toxicology Reports, 7, 1483–1491.

31. Papoutsis, I., et al. (2021). Kratom metabolism and toxicity: insights from preclinical studies. Forensic Science International, 324, 110853.

32. Rao, P. N., & Knaus, E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. Journal of Pharmacy & Pharmaceutical Sciences, 11(2), 81s-110s. https://doi.org/10.18433/J3T886

33. Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986-1000. https://doi.org/10.1161/ATVBAHA.110.207449

34. Saingam, D., et al. (2021). Clinical implications of kratom consumption in Southeast Asia: a review. Drug Science, Policy and Law, 7, 205032452110563.

35. Singh, D., Narayanan, S., & Grundmann, O. (2023). Kratom use in pain and opioid withdrawal: pharmacology, benefits, and risks. Current Addiction Reports, 10, 127–139.

36. Smith, J. A., et al. (2022). Comparative toxicity of traditional NSAIDs and COX-2 inhibitors in rodent models. Toxicology and Applied Pharmacology, 454, 116243.

37. Tan, W., et al. (2024). Alkaloid–flavonoid synergy in kratom extract modulates inflammatory pathways. Journal of Ethnopharmacology, 319, 117055.

38. Taufiqurrahman, M., et al. (2023). Profil fitokimia dan potensi analgesik ekstrak daun kratom (Mitragyna speciosa) asal Kalimantan Timur. Jurnal Farmasi Indonesia, 9(2), 145–158.

39. Thongpraditchote, S., et al. (2022). Acute and subchronic safety evaluation of kratom extract in rats. Regulatory Toxicology and Pharmacology, 129, 105108.

40. Vane, J. R., & Botting, R. M. (2020). The mechanism of action of anti-inflammatory drugs. International Journal of Clinical Pharmacology, 56(11), 1231–1244.

41. Warner, M. L., Kaufman, N. C., & Grundmann, O. (2016). The pharmacology and toxicology of kratom: from traditional use to modern research. International Journal of Legal Medicine, 130, 127–138.

42. Yap, J. Y., et al. (2020). Binding and docking studies of kratom alkaloids to cyclooxygenase-2 enzyme. Computational Biology Journal, 17(3), 211–222.

Downloads

Published

2025-11-10

Issue

Section

Articles

How to Cite

[1]
F. Presetya, “Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit”, J. Sains. Kes, vol. 6, no. 2, pp. 82–91, Nov. 2025, doi: 10.30872/jsk.v6i2.942.

Similar Articles

71-80 of 209

You may also start an advanced similarity search for this article.