Diagnosis Penyakit Menggunakan Artificial Intelligence (AI):Konsep, Bukti Ilmiah, dan Implikasi Klinis
Disease Diagnosis Using Artificial Intelligence (AI): Concepts, Scientific Evidence, and Clinical Implications
DOI:
https://doi.org/10.30872/jsk.v6i1.976Keywords:
artificial intelligence; disease diagnosis; machine learning; deep learning; clinical decision support; medical imaging; electronic medical recordsAbstract
References
[1] H. Singh, T. D. Giardina, E. N. Meyer, M. Forjuoh, R. D. Reis, and E. J. Thomas, “Types and origins of diagnostic errors in primary care settings,” JAMA Internal Medicine, vol. 173, no. 6, pp. 418–425, 2013.
[2] E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nature Medicine, vol. 25, no. 1, pp. 44–56, 2019.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
[4] G. Campanella et al., “Clinical-grade computational pathology using weakly supervised deep learning on whole-slide images,” Nature Medicine, vol. 25, no. 8, pp. 1301–1309, 2019.
[5] A. Rajkomar et al., “Scalable and accurate deep learning for electronic health records,” npj Digital Medicine, vol. 1, no. 18, 2018.
[6] G. Litjens et al., “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
[7] M. Nagendran et al., “Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims,” BMJ, vol. 368, m689, 2020.
[8] R. Aggarwal et al., “Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis,” npj Digital Medicine, vol. 4, no. 65, 2021.
[9] M. D. Abràmoff et al., “Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices,” npj Digital Medicine, vol. 1, no. 39, 2018.
[10] V. Gulshan et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.
[11] D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nature Medicine, vol. 25, no. 6, pp. 954–961, 2019.
[12] D. A. Bluemke et al., “Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers,” Radiology, vol. 294, no. 3, pp. 487–489, 2020.
[13] S. M. McKinney et al., “International evaluation of an AI system for breast cancer screening,” Nature, vol. 577, pp. 89–94, 2020.
[14] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection with convolutional neural networks,” Nature Medicine, vol. 25, pp. 65–69, 2019.
[15] Z. Obermeyer and E. J. Emanuel, “Predicting the future — Big data, machine learning, and clinical medicine,” New England Journal of Medicine, vol. 375, no. 13, pp. 1216–1219, 2016.
[16] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science, vol. 366, no. 6464, pp. 447–453, 2019.
[17] T. J. Hwang, A. S. Kesselheim, and K. N. Vokinger, “Lifecycle regulation of artificial intelligence–based medical devices,” JAMA, vol. 322, no. 23, pp. 2285–2286, 2019.
[18] X. Liu et al., “CONSORT-AI: Extension of the CONSORT statement for artificial intelligence trials,” BMJ, vol. 370, m3164, 2020.
[19] S. Cruz Rivera et al., “SPIRIT-AI extension for clinical trial protocols,” Nature Medicine, vol. 26, pp. 1351–1363, 2020.
[20] G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. M. Moons, “TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis,” Annals of Internal Medicine, vol. 162, no. 1, pp. 55–63, 2015.
[21] G. S. Collins et al., “TRIPOD+AI: A reporting guideline for clinical prediction models developed using artificial intelligence,” BMJ, vol. 385, e078378, 2024.
[22] E. W. Steyerberg et al., “Assessing the performance of prediction models: calibration,” Statistics in Medicine, vol. 29, no. 27, pp. 2869–2884, 2010.
[23] R. F. Wolff et al., “PROBAST: A tool to assess the risk of bias and applicability of prediction model studies,” Annals of Internal Medicine, vol. 170, no. 1, pp. 51–58, 2019.
[24] C. Patrício et al., “Explainable deep learning models in medical imaging: A survey,” ACM Computing Surveys, 2023.
[25] B. N. Green, C. D. Johnson, and A. Adams, “Writing narrative literature reviews for peer-reviewed journals: secrets of the trade,” Journal of Chiropractic Medicine, vol. 5, no. 3, pp. 101–117, 2006.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Fajar Presetya, Mentarry Bafadal, Nurul Muhlisa Mus, Fikri Ramdhani Sahar, Onny Ziasti Fricillia, Pryenalvend Khisanta Piter, Gayuk Kalih Prasesti, Lusy Noviani, Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Fajar Presetya, Lusy Noviani, Saintifikasi Jamu pada Layanan Kesehatan di Rumah Sakit: Kerangka Ilmiah, Tata Kelola Klinis, Keselamatan Pasien, dan Strategi Implementasi Berbasis Bukti , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
Similar Articles
- Marcella Adisuhanto, Irene Vanessa, Mario Steffanus, Riki Tenggara, Hubungan Antara Kejadian Anemia dengan Temuan Endoskopi Saluran Pencernaan Atas pada Pasien Tanpa Manifestasi Hematemesis dan Melena , Jurnal Sains dan Kesehatan: Vol. 6 No. 3 (2025)
- Laily Mulyani, Novia Fransiska Ngo, Riries Choiru Pramulia Yudia, Hubungan Obesitas dengan Komplikasi Maternal dan Luaran Perinatal , Jurnal Sains dan Kesehatan: Vol. 3 No. 2 (2021): J. Sains Kes.
- Alius Cahyadi, Maria Riastuti Iryaningrum, Christina Jeanny, Status Nutrisi pada Pasien Penyakit Ginjal Kronik yang Menjalani Hemodialisis dan Non-dialisis di RS Atma Jaya Tahun 2021-2024 , Jurnal Sains dan Kesehatan: Vol. 6 No. 3 (2025)
- Oppie Anngela, Afidatul Muadifah, Dhanang Prawira Nugraha, Validasi Metode Penetapan Kadar Boraks pada Kerupuk Puli Menggunakan Spektrofotometer UV-Vis , Jurnal Sains dan Kesehatan: Vol. 3 No. 4 (2021): J. Sains Kes.
- Ayu Wira Oktalia, Yuliana Rahmah Retnaningrum, Siti Khotimah, Hubungan antara Penyakit Arteri Perifer dan Kadar Hba1c dengan Tindakan Amputasi Ekstremitas pada Pasien Ulkus Kaki Diabetik di RSUD Abdul Wahab Sjahranie Samarinda , Jurnal Sains dan Kesehatan: Vol. 3 No. 5 (2021): J. Sains Kes.
- Fajar Presetya, Lusy Noviani, Saintifikasi Jamu pada Layanan Kesehatan di Rumah Sakit: Kerangka Ilmiah, Tata Kelola Klinis, Keselamatan Pasien, dan Strategi Implementasi Berbasis Bukti , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
- Dharma Kumara Widya, Jaya Sjamsoedin, Willie Japaries, Integrasi Akupunktur dan Akupresur pada Layanan Kesehatan Primer dan Modern: Bukti Klinis, Tata Kelola Keselamatan, Model Implementasi, dan Perangkat Operasional , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
- Enggarita Widyahapsari, Hadi Irawiraman, Endang Sawitri, Tingkat Pengetahuan tentang Kanker Payudara dan Perilaku SADARI pada Mahasiswi Prodi Kedokteran Fakultas Kedokteran Universitas Mulawarman , Jurnal Sains dan Kesehatan: Vol. 3 No. 3 (2021): J. Sains Kes.
- Esmaya R. A. Adaniyah, Endang Sawitri, Erwin Ginting, Review: Pengaruh Faktor Risiko Terhadap Induksi Persalinan , Jurnal Sains dan Kesehatan: Vol. 3 No. 6 (2021): J. Sains Kes.
- Fadillah Hana Hafifah, Nur Khoma Fatmawati, Fransiska Anggreni Sihotang, Siti Khotimah, Hubungan Lama Penggunaan Amlodipine dengan Derajat Keluhan Mata Kering pada Pasien Hipertensi , Jurnal Sains dan Kesehatan: Vol. 3 No. 4 (2021): J. Sains Kes.
You may also start an advanced similarity search for this article.

