In Silico Study of Bajakah Compounds (Spatholobus suberectus) to ProteaseSARS-CoV-2 Inhibitor

Authors

  • Norhayati Norhayati University of Muhammadiyah Banjarmasin, Indonesia Author
  • Andika Andika University of Muhammadiyah Banjarmasin, Indonesia Author https://orcid.org/0000-0002-4621-7315
  • Aris Purwanto University of Muhammadiyah Banjarmasin, Indonesia Author

DOI:

https://doi.org/10.30872/jsk.v5i2.p78-89

Keywords:

SARS-CoV-2, bajakah, molecular docking, licochalcone A

Abstract

Coronavirus Disease 2019 or COVID-19 is caused by a virus called Severe Acute Respiratory Syndrome Coronavirus 2. Until now, there is no specific treatment guide in dealing with COVID-19 in Indonesia. The curative pharmacological therapy for COVID-19 used is antiviral such as lopinavir, ritonavir, and oseltamivir, currently based on trial and error. This study carried out a Molecular Docking Analysis of 16 compounds owned by the Bajakah plant (Spatholobus suberectus). Oseltamivir was used as a control, and validation was carried out on a natural ligand, namely boceprevir against the main protease CoV or Mpro, 7C6S and the result was 1.47 Å using Toshiba hardware and AutoDock Tools, ChemSketch, Discovery Studio, Avogadro, UCSF Chimera software. Lipinski Rules of Five (RO5) analysis and ADMET analysis using SWISSADME and admetSAR. Licochalcone A compound had the best binding energy and inhibition constant values of -7.98 kcal/mol and 1.42 ?M. In contrast, the 6-Methoxyeriodictyol compound had fewer binding energy and inhibition constants, namely -5.24 kcal/mol and 143.04 ?M, respectively. In addition to the licochalcone A compound, the afrormosin compound, 3'4'7'-trihydroxyflavone, formononetin, cajanin, and dihydrokaempferol showed good binding energy values and inhibition constants compared to oseltamivir (control), so that these compounds have the potential to inhibit Mpro SARS-COV-2 or the virus that causes COVID-19. Analysis of Lipinski Rules of Five and ADMET is used to determine the properties of a molecule on the pharmacokinetics of drugs in the human body, and the results obtained to meet the requirements so that it is potentially effective for oral consumption.

References

World Health Organization. COVID-19 Public Health Emergency of International Concern (PHEIC) Global research and innovation forum. 2020. Available from: https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum [visited on May 09th 2021]

Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., Soejipto S. Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Moleculer Docking Study. Preprints. 2020.

Wink, M., & Mohamed G. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene [J]. Biochem Syst Ecol. 2003;31(8):897–917.

Huang KC. The pharmacology of Chinese herbs. Boca Rat CRC Press. 1993;261.

Li, RW., Lin, GD., Myers, SP., Leach D. Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol. 2003;5:61–7.

Y Goda, M Shibaya, U Sankawa GY. Inhibitors of prostaglandin biosynthesis from Mucuna birdwoodiana. Chem Pharm Bull. 1987;35:2675–7.

Jiang, S.Y., Huang, K., Liu, W., Fu, F.M., Xu J. Combined AutoDock and comparative molecular field analysis study on predicting 5-lipoxygenase inhibitory activity of flavonoids isolated from Spatholobus suberectus Dunn. Zeitschrift Fur Naturforsch C J Biosci. 2015;70(3–4):103–13.

Jain, A.N., Nicolls A. Recommendations for Evaluations of Computational Methods. J Comput Aided Mol. 2008;(22):133–9.

Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil C. Towards the Development of Universal, Fast and Highly Accurate Docking Scoring Methods: a Long Way to Go. Br J Pharmacol. 2008;153(1):7–26.

Morris GM, et al. AutoDock Version 4.2: Automated Docking of Flexible Ligands to Flexible Receptors. La Jolla, California, USA Scripps Res Institute. 2009;

Eris Septiana. Prospek Senyawa Bahan Alam Sebagai Antivirus Dalam Menghambat SARS-CoV-2. BioTrends. 2020;11(1):30–8.

Badan Pengawasan Obat dan Makanan Republik Indonesia. Informatorium Obat COVID-19 di Indonesia. BPOM [Internet]. 2020;24. Available from: ISBN 978-602-415-009-9

Kitchen D., Decornez H, Furr J, Bajorath J. Docking and Scoring in Virtual Screening for Drug Discovery. Nat Rev Drug Discov. 2004;48:507–16.

Hawskins P, Warren G, Skillman A, Nicholls A. How to do an Evaluation: Pitfalls and Traps. J Comput Mol Des. 2008;22:179–90.

Rachmania R., Supandi, Cristina F. Analisis Penambatan Molekul Senyawa Flavonoid Buah Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.) pada Reseptor a-Glukosidase sebagai Antidiabetes. Pharmacy. 2016;13:239–51.

Idrees S, Ashfaq U. Discovery and design of cyclic peptides as dengue virus inhibitors through structure- based molecular docking. Asian Pac J Trop Med. 2014;7(7):513–6.

Chen, M., Zhai, L., Christensen, S., Theander, T., and Kinoshita T. Inhibition of fumarate reductase in Leishmenia major and L. Donovani by chalcones. Antimicrob Agents Chemother. 45:2023–9.

Rafi, M., Rosen, R., Vassil, A., Ho, C., Zhang, H., Ghai G et al. Modulation of bel-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer Res. 20:2653–8.

Adianti, M. et al. Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiol Immunol. 2014;58:180–7.

Toda, S., Shirataki Y. Inhibitory effects of isoflavones on lipid peroxidation by reactive oxygen species. Phytother Res. 1999;13:163–5.

Ding, B., Yuan, L., Yu, H., Li, L., Ma, W., Bi, Y. et al. Genistein and Folic Acid prevent oxidative injury induced by b-amyloid peptide. Basic Clin Pharmacol Toxicol. 2011;108::333–4.

Huang, W.H., Lee, A.R., Yang C. Antioxidative and anti-inflammatory activities of polyhydroxy flavonoids of Scutellaria baicalensis. Biosci Biotechnol Biochem. 2006;(2371):80.

Jung, M. et al. Antioxidant Activity from the Stem Bark of Albizzia julibrissin. Arch Pharm Res. 2003;26(6):458–62.

Tay K-C, Tan LT-H, Chan CK, Hong SL, Chan K-G, Yap WH, et al. Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front Pharmacol. 2019;10(July):1–19.

Dai, W. et al. Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Mdpi Journal, Viruses. 2019;625.

Fu, Y.J., Zhu, Y.G.,Wu, N., Kong, Y., Liu, W., Hua X. Application of Cajanus cajan stilbene acid and pinostrobin in Cajanus cajan leaf in preparing anti-herpes virus medicament. 2009;(CN101485649):7–22.

Sun, L., Luo, Q.F., Yang, J., Chen, D.H., Si, J.Y., Pan, R.L. et al. Application of Cajanus cajan L. extracts in preparing hyperlipemia medicine. 2008;CN10120441(18):6–25.

Luo, Q.F., Sun, L., Si, J.Y., Chen D. Hypocholesterolemic effect of stilbenes containing extract-fractionfrom Cajanus cajan L. ondiet- induced hyper cholesterolemia in mice. Phytomedicine. 2008;15:932–9.

Zheng, Y.Y., Yang, J.,Chen, D.H., Sun L. Effects of the stilbene extracts from Cajanus cajan L. On ovariectomy-inducedboneloss in rats. Acta PharmSin. 2007;42:562–5.

Luo, Q.F., Sun, L., Si, J.Y., Chen, D.H., Du G. Hypocholesterolemic effect of stilbene extract from Cajanus cajan L. On serum and hepatic lipid in diet-induced hyperlipidemic mice. Acta Pharm Sin. 2008;43:145–9.

Nwodo, U. et al. In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus. Arch Virol. 2011;156:1551–7.

Chunhakant, S., Chaicharoenpong C. Antityrosinase, Antioxidant, and Cytotoxic Activities of Phytochemical Constituents from Manilkara zapota L. Bark. Molecules. 2019;24:2798.

Umamaheswari, M., Madeswaran, A., and Asokkumar K. Virtual Screening Analysis and In-vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids. Iran J Pharm Res IJPR. 2013;12(3):317–23.

MacRaild C.A., Daranas A.H., Bronowska A. HS. Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein. J Mol Biol. 2007;368:822–32.

Bronowska A.K. Thermodynamics of ligand-protein interactions: Implications for molecular design. In: Moreno-Piraján J.C., editor. Thermodynamics—Interaction Studies—Solids, Liquids and Gases. InTech; Rijeka, Croat. 2011;1–48.

Liu S.Q. et al. Protein folding, binding and energy landscape: A synthesis. In: Kaumaya P.T.P., editor. Protein Engineering. InTech; Rijeka, Croat. 2012;207–252.

Li H., Xie Y., Liu C. LS. Physicochemical bases for protein folding, dynamics, and protein-ligand binding. Sci China Life Sci. 2014;57:287–302.

Lipinski C., Lombardo F, Dominy B., Feeney P. Experimental and computational approaches to estimare solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

Lipinski C., Lombardo F, Dominy B., Feeney P. Drug Discovery Today. Technologie. 2004;1(4):337–41.

Wulandari EK. Karya Pascasarjana Kimia?: Analisis Interaksi Histone Deacetylase (HDAC) Kelas II Homo Sapiens Dengan Suberoyllanilide Hydroxamic Acids (SAHA) dan Trichostantin A (TSA). 2010.

Weni M, et al. Studi In Vitro dan Penambatan Molekuler Senyawa Bioaktif Ekstrak dan Fraksi Daun Sirih Merah (Piper crocatum) sebagai Inhibitor ?-Glukosidase. Bogor (ID); 2018.

Stegemann, S. et al. When poor solubility becomes an issue: From early stage to proof of concept. Pharm Sci. 2007;31:249–61.

O’Hagan, S.and Kell D. The Apparent Permeabilities of Caco-2 Cells to Marketed Drugs: Magnitude, and Independence from Both Biophysical Properties and Endogenite Similarities. Peer J3. 2015;1405.

Rollando. Pengantar Kimia Medisinal. In: Wicaksono SR, editor. Malang, Jawa Timur: CV. Seribu Bintang; 2017.

Arwansyah, Laksmi A. TI. Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Curr Biochem J. 2014;1(1):11–9.

Published

2025-01-14

How to Cite

In Silico Study of Bajakah Compounds (Spatholobus suberectus) to ProteaseSARS-CoV-2 Inhibitor. (2025). Jurnal Sains Dan Kesehatan, 5(2), 78-89. https://doi.org/10.30872/jsk.v5i2.p78-89