In Silico Study of Bajakah Compounds (Spatholobus suberectus) to ProteaseSARS-CoV-2 Inhibitor
DOI:
https://doi.org/10.30872/jsk.v5i2.p78-89Keywords:
SARS-CoV-2, bajakah, molecular docking, licochalcone AAbstract
References
World Health Organization. COVID-19 Public Health Emergency of International Concern (PHEIC) Global research and innovation forum. 2020. Available from: https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum [visited on May 09th 2021]
Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., Soejipto S. Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Moleculer Docking Study. Preprints. 2020.
Wink, M., & Mohamed G. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene [J]. Biochem Syst Ecol. 2003;31(8):897–917.
Huang KC. The pharmacology of Chinese herbs. Boca Rat CRC Press. 1993;261.
Li, RW., Lin, GD., Myers, SP., Leach D. Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol. 2003;5:61–7.
Y Goda, M Shibaya, U Sankawa GY. Inhibitors of prostaglandin biosynthesis from Mucuna birdwoodiana. Chem Pharm Bull. 1987;35:2675–7.
Jiang, S.Y., Huang, K., Liu, W., Fu, F.M., Xu J. Combined AutoDock and comparative molecular field analysis study on predicting 5-lipoxygenase inhibitory activity of flavonoids isolated from Spatholobus suberectus Dunn. Zeitschrift Fur Naturforsch C J Biosci. 2015;70(3–4):103–13.
Jain, A.N., Nicolls A. Recommendations for Evaluations of Computational Methods. J Comput Aided Mol. 2008;(22):133–9.
Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil C. Towards the Development of Universal, Fast and Highly Accurate Docking Scoring Methods: a Long Way to Go. Br J Pharmacol. 2008;153(1):7–26.
Morris GM, et al. AutoDock Version 4.2: Automated Docking of Flexible Ligands to Flexible Receptors. La Jolla, California, USA Scripps Res Institute. 2009;
Eris Septiana. Prospek Senyawa Bahan Alam Sebagai Antivirus Dalam Menghambat SARS-CoV-2. BioTrends. 2020;11(1):30–8.
Badan Pengawasan Obat dan Makanan Republik Indonesia. Informatorium Obat COVID-19 di Indonesia. BPOM [Internet]. 2020;24. Available from: ISBN 978-602-415-009-9
Kitchen D., Decornez H, Furr J, Bajorath J. Docking and Scoring in Virtual Screening for Drug Discovery. Nat Rev Drug Discov. 2004;48:507–16.
Hawskins P, Warren G, Skillman A, Nicholls A. How to do an Evaluation: Pitfalls and Traps. J Comput Mol Des. 2008;22:179–90.
Rachmania R., Supandi, Cristina F. Analisis Penambatan Molekul Senyawa Flavonoid Buah Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.) pada Reseptor a-Glukosidase sebagai Antidiabetes. Pharmacy. 2016;13:239–51.
Idrees S, Ashfaq U. Discovery and design of cyclic peptides as dengue virus inhibitors through structure- based molecular docking. Asian Pac J Trop Med. 2014;7(7):513–6.
Chen, M., Zhai, L., Christensen, S., Theander, T., and Kinoshita T. Inhibition of fumarate reductase in Leishmenia major and L. Donovani by chalcones. Antimicrob Agents Chemother. 45:2023–9.
Rafi, M., Rosen, R., Vassil, A., Ho, C., Zhang, H., Ghai G et al. Modulation of bel-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer Res. 20:2653–8.
Adianti, M. et al. Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiol Immunol. 2014;58:180–7.
Toda, S., Shirataki Y. Inhibitory effects of isoflavones on lipid peroxidation by reactive oxygen species. Phytother Res. 1999;13:163–5.
Ding, B., Yuan, L., Yu, H., Li, L., Ma, W., Bi, Y. et al. Genistein and Folic Acid prevent oxidative injury induced by b-amyloid peptide. Basic Clin Pharmacol Toxicol. 2011;108::333–4.
Huang, W.H., Lee, A.R., Yang C. Antioxidative and anti-inflammatory activities of polyhydroxy flavonoids of Scutellaria baicalensis. Biosci Biotechnol Biochem. 2006;(2371):80.
Jung, M. et al. Antioxidant Activity from the Stem Bark of Albizzia julibrissin. Arch Pharm Res. 2003;26(6):458–62.
Tay K-C, Tan LT-H, Chan CK, Hong SL, Chan K-G, Yap WH, et al. Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front Pharmacol. 2019;10(July):1–19.
Dai, W. et al. Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Mdpi Journal, Viruses. 2019;625.
Fu, Y.J., Zhu, Y.G.,Wu, N., Kong, Y., Liu, W., Hua X. Application of Cajanus cajan stilbene acid and pinostrobin in Cajanus cajan leaf in preparing anti-herpes virus medicament. 2009;(CN101485649):7–22.
Sun, L., Luo, Q.F., Yang, J., Chen, D.H., Si, J.Y., Pan, R.L. et al. Application of Cajanus cajan L. extracts in preparing hyperlipemia medicine. 2008;CN10120441(18):6–25.
Luo, Q.F., Sun, L., Si, J.Y., Chen D. Hypocholesterolemic effect of stilbenes containing extract-fractionfrom Cajanus cajan L. ondiet- induced hyper cholesterolemia in mice. Phytomedicine. 2008;15:932–9.
Zheng, Y.Y., Yang, J.,Chen, D.H., Sun L. Effects of the stilbene extracts from Cajanus cajan L. On ovariectomy-inducedboneloss in rats. Acta PharmSin. 2007;42:562–5.
Luo, Q.F., Sun, L., Si, J.Y., Chen, D.H., Du G. Hypocholesterolemic effect of stilbene extract from Cajanus cajan L. On serum and hepatic lipid in diet-induced hyperlipidemic mice. Acta Pharm Sin. 2008;43:145–9.
Nwodo, U. et al. In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus. Arch Virol. 2011;156:1551–7.
Chunhakant, S., Chaicharoenpong C. Antityrosinase, Antioxidant, and Cytotoxic Activities of Phytochemical Constituents from Manilkara zapota L. Bark. Molecules. 2019;24:2798.
Umamaheswari, M., Madeswaran, A., and Asokkumar K. Virtual Screening Analysis and In-vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids. Iran J Pharm Res IJPR. 2013;12(3):317–23.
MacRaild C.A., Daranas A.H., Bronowska A. HS. Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein. J Mol Biol. 2007;368:822–32.
Bronowska A.K. Thermodynamics of ligand-protein interactions: Implications for molecular design. In: Moreno-Piraján J.C., editor. Thermodynamics—Interaction Studies—Solids, Liquids and Gases. InTech; Rijeka, Croat. 2011;1–48.
Liu S.Q. et al. Protein folding, binding and energy landscape: A synthesis. In: Kaumaya P.T.P., editor. Protein Engineering. InTech; Rijeka, Croat. 2012;207–252.
Li H., Xie Y., Liu C. LS. Physicochemical bases for protein folding, dynamics, and protein-ligand binding. Sci China Life Sci. 2014;57:287–302.
Lipinski C., Lombardo F, Dominy B., Feeney P. Experimental and computational approaches to estimare solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.
Lipinski C., Lombardo F, Dominy B., Feeney P. Drug Discovery Today. Technologie. 2004;1(4):337–41.
Wulandari EK. Karya Pascasarjana Kimia?: Analisis Interaksi Histone Deacetylase (HDAC) Kelas II Homo Sapiens Dengan Suberoyllanilide Hydroxamic Acids (SAHA) dan Trichostantin A (TSA). 2010.
Weni M, et al. Studi In Vitro dan Penambatan Molekuler Senyawa Bioaktif Ekstrak dan Fraksi Daun Sirih Merah (Piper crocatum) sebagai Inhibitor ?-Glukosidase. Bogor (ID); 2018.
Stegemann, S. et al. When poor solubility becomes an issue: From early stage to proof of concept. Pharm Sci. 2007;31:249–61.
O’Hagan, S.and Kell D. The Apparent Permeabilities of Caco-2 Cells to Marketed Drugs: Magnitude, and Independence from Both Biophysical Properties and Endogenite Similarities. Peer J3. 2015;1405.
Rollando. Pengantar Kimia Medisinal. In: Wicaksono SR, editor. Malang, Jawa Timur: CV. Seribu Bintang; 2017.
Arwansyah, Laksmi A. TI. Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Curr Biochem J. 2014;1(1):11–9.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.