Diagnosis Penyakit Menggunakan Artificial Intelligence (AI):Konsep, Bukti Ilmiah, dan Implikasi Klinis
Disease Diagnosis Using Artificial Intelligence (AI): Concepts, Scientific Evidence, and Clinical Implications
DOI:
https://doi.org/10.30872/jsk.v6i1.976Keywords:
artificial intelligence; disease diagnosis; machine learning; deep learning; clinical decision support; medical imaging; electronic medical recordsAbstract
References
[1] H. Singh, T. D. Giardina, E. N. Meyer, M. Forjuoh, R. D. Reis, and E. J. Thomas, “Types and origins of diagnostic errors in primary care settings,” JAMA Internal Medicine, vol. 173, no. 6, pp. 418–425, 2013.
[2] E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nature Medicine, vol. 25, no. 1, pp. 44–56, 2019.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
[4] G. Campanella et al., “Clinical-grade computational pathology using weakly supervised deep learning on whole-slide images,” Nature Medicine, vol. 25, no. 8, pp. 1301–1309, 2019.
[5] A. Rajkomar et al., “Scalable and accurate deep learning for electronic health records,” npj Digital Medicine, vol. 1, no. 18, 2018.
[6] G. Litjens et al., “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
[7] M. Nagendran et al., “Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims,” BMJ, vol. 368, m689, 2020.
[8] R. Aggarwal et al., “Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis,” npj Digital Medicine, vol. 4, no. 65, 2021.
[9] M. D. Abràmoff et al., “Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices,” npj Digital Medicine, vol. 1, no. 39, 2018.
[10] V. Gulshan et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.
[11] D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nature Medicine, vol. 25, no. 6, pp. 954–961, 2019.
[12] D. A. Bluemke et al., “Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers,” Radiology, vol. 294, no. 3, pp. 487–489, 2020.
[13] S. M. McKinney et al., “International evaluation of an AI system for breast cancer screening,” Nature, vol. 577, pp. 89–94, 2020.
[14] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection with convolutional neural networks,” Nature Medicine, vol. 25, pp. 65–69, 2019.
[15] Z. Obermeyer and E. J. Emanuel, “Predicting the future — Big data, machine learning, and clinical medicine,” New England Journal of Medicine, vol. 375, no. 13, pp. 1216–1219, 2016.
[16] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science, vol. 366, no. 6464, pp. 447–453, 2019.
[17] T. J. Hwang, A. S. Kesselheim, and K. N. Vokinger, “Lifecycle regulation of artificial intelligence–based medical devices,” JAMA, vol. 322, no. 23, pp. 2285–2286, 2019.
[18] X. Liu et al., “CONSORT-AI: Extension of the CONSORT statement for artificial intelligence trials,” BMJ, vol. 370, m3164, 2020.
[19] S. Cruz Rivera et al., “SPIRIT-AI extension for clinical trial protocols,” Nature Medicine, vol. 26, pp. 1351–1363, 2020.
[20] G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. M. Moons, “TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis,” Annals of Internal Medicine, vol. 162, no. 1, pp. 55–63, 2015.
[21] G. S. Collins et al., “TRIPOD+AI: A reporting guideline for clinical prediction models developed using artificial intelligence,” BMJ, vol. 385, e078378, 2024.
[22] E. W. Steyerberg et al., “Assessing the performance of prediction models: calibration,” Statistics in Medicine, vol. 29, no. 27, pp. 2869–2884, 2010.
[23] R. F. Wolff et al., “PROBAST: A tool to assess the risk of bias and applicability of prediction model studies,” Annals of Internal Medicine, vol. 170, no. 1, pp. 51–58, 2019.
[24] C. Patrício et al., “Explainable deep learning models in medical imaging: A survey,” ACM Computing Surveys, 2023.
[25] B. N. Green, C. D. Johnson, and A. Adams, “Writing narrative literature reviews for peer-reviewed journals: secrets of the trade,” Journal of Chiropractic Medicine, vol. 5, no. 3, pp. 101–117, 2006.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Fajar Presetya, Mentarry Bafadal, Nurul Muhlisa Mus, Fikri Ramdhani Sahar, Onny Ziasti Fricillia, Pryenalvend Khisanta Piter, Gayuk Kalih Prasesti, Lusy Noviani, Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Fajar Presetya, Lusy Noviani, Saintifikasi Jamu pada Layanan Kesehatan di Rumah Sakit: Kerangka Ilmiah, Tata Kelola Klinis, Keselamatan Pasien, dan Strategi Implementasi Berbasis Bukti , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
Similar Articles
- Miko Dharma Alrasyid, Go Eddy Gunawan, Nadia Permatasari, Hubungan Tingkat Stres Kerja dengan Gangguan Somatoform pada Personel TNI Rindam Iskandar Muda Aceh Tahun 2023 , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Tantri Rachmayani, Akrom Akrom, Titiek Hidayati, Pengaruh Minyak Biji Jinten Hitam (Nigella sativa L) terhadap Kadar Interleukin-4 , Jurnal Sains dan Kesehatan: Vol. 3 No. 6 (2021): J. Sains Kes.
- Risna Agustina, Andreanus A. Soemardji, Efektivitas Akupunktur “GI” terhadap Pengobatan Stres pada Pasien di Klinik Akupunktur Sukamenak dan UPT Layanan Kesehatan Bumi Medika Ganesa ITB , Jurnal Sains dan Kesehatan: Vol. 1 No. 5 (2016): J. Sains Kes.
- dr. Regina, Sp.DVE, Dr. dr. Lorettha Wijaya, Sp.DVE, dr. Christina Jeanny Soekiono, Variasi Manifestasi Klinis Adverse Cutaneous Drug Reaction (ACDR) pada Pasien di RS Atma Jaya Tahun 2020-2024 , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Ani Anggriani, Pujani Utami, Ida Lisni, Kajian Potensi Interaksi Obat Pada Pasien Glaukoma di Salah Satu Rumah Sakit di Bandung , Jurnal Sains dan Kesehatan: Vol. 1 No. 5 (2016): J. Sains Kes.
- Wa Ode Gustiani Purnamasari, Titi Purnama, Asfani Yuhadi, Bonni Rubak, Muhammad Wira Amridar, Analisis Jumlah Monosit Pada Sediaan Apus Darah Penderita Malaria Yang Di Cross – Chek UPTD Balai Laboratorium Kesehatan Sulawesi Tenggara , Jurnal Sains dan Kesehatan: Vol. 6 No. 3 (2025)
- Widi Puteri, Fildza Huwaina Fathnin, Analisis Penerapan Akad Ijarah dan Akad Ba’I Pada Pengadaan Sediaan Farmasi dan Alat Kesehatan Berdasarkan Kesesuaiannya Dengan Fatwa DSN-MUI di Instalasi Farmasi Rumah Sakit TK III Bhakti Wira Tamtama Semarang , Jurnal Sains dan Kesehatan: Vol. 6 No. 3 (2025)
- Dipo Try Harto Nusantara, Hadi Irawiraman, Nirapambudi Devianto, Perbandingan Kualitas Hidup Antara Pasien Penyakit Ginjal Kronik yang Menjalani Terapi CAPD dengan Hemodialisis di RSUD Abdul Wahab Sjahranie Samarinda , Jurnal Sains dan Kesehatan: Vol. 3 No. 3 (2021): J. Sains Kes.
- Ida Lisni, Nurani Eka Gumilang, Eva Kusumahati, Potensi Medication error Pada Resep di Salah Satu Apotek di Kota Kadipaten , Jurnal Sains dan Kesehatan: Vol. 3 No. 4 (2021): J. Sains Kes.
- Aulia Seftiya, Khemasili Kosala, Epidemiologi Karakteristik Pasien Covid-19 di Kalimantan Utara , Jurnal Sains dan Kesehatan: Vol. 3 No. 5 (2021): J. Sains Kes.
You may also start an advanced similarity search for this article.

