Diagnosis Penyakit Menggunakan Artificial Intelligence (AI):Konsep, Bukti Ilmiah, dan Implikasi Klinis
Disease Diagnosis Using Artificial Intelligence (AI): Concepts, Scientific Evidence, and Clinical Implications
DOI:
https://doi.org/10.30872/jsk.v6i1.976Keywords:
artificial intelligence; disease diagnosis; machine learning; deep learning; clinical decision support; medical imaging; electronic medical recordsAbstract
References
[1] H. Singh, T. D. Giardina, E. N. Meyer, M. Forjuoh, R. D. Reis, and E. J. Thomas, “Types and origins of diagnostic errors in primary care settings,” JAMA Internal Medicine, vol. 173, no. 6, pp. 418–425, 2013.
[2] E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nature Medicine, vol. 25, no. 1, pp. 44–56, 2019.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
[4] G. Campanella et al., “Clinical-grade computational pathology using weakly supervised deep learning on whole-slide images,” Nature Medicine, vol. 25, no. 8, pp. 1301–1309, 2019.
[5] A. Rajkomar et al., “Scalable and accurate deep learning for electronic health records,” npj Digital Medicine, vol. 1, no. 18, 2018.
[6] G. Litjens et al., “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
[7] M. Nagendran et al., “Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims,” BMJ, vol. 368, m689, 2020.
[8] R. Aggarwal et al., “Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis,” npj Digital Medicine, vol. 4, no. 65, 2021.
[9] M. D. Abràmoff et al., “Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices,” npj Digital Medicine, vol. 1, no. 39, 2018.
[10] V. Gulshan et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.
[11] D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nature Medicine, vol. 25, no. 6, pp. 954–961, 2019.
[12] D. A. Bluemke et al., “Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers,” Radiology, vol. 294, no. 3, pp. 487–489, 2020.
[13] S. M. McKinney et al., “International evaluation of an AI system for breast cancer screening,” Nature, vol. 577, pp. 89–94, 2020.
[14] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection with convolutional neural networks,” Nature Medicine, vol. 25, pp. 65–69, 2019.
[15] Z. Obermeyer and E. J. Emanuel, “Predicting the future — Big data, machine learning, and clinical medicine,” New England Journal of Medicine, vol. 375, no. 13, pp. 1216–1219, 2016.
[16] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science, vol. 366, no. 6464, pp. 447–453, 2019.
[17] T. J. Hwang, A. S. Kesselheim, and K. N. Vokinger, “Lifecycle regulation of artificial intelligence–based medical devices,” JAMA, vol. 322, no. 23, pp. 2285–2286, 2019.
[18] X. Liu et al., “CONSORT-AI: Extension of the CONSORT statement for artificial intelligence trials,” BMJ, vol. 370, m3164, 2020.
[19] S. Cruz Rivera et al., “SPIRIT-AI extension for clinical trial protocols,” Nature Medicine, vol. 26, pp. 1351–1363, 2020.
[20] G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. M. Moons, “TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis,” Annals of Internal Medicine, vol. 162, no. 1, pp. 55–63, 2015.
[21] G. S. Collins et al., “TRIPOD+AI: A reporting guideline for clinical prediction models developed using artificial intelligence,” BMJ, vol. 385, e078378, 2024.
[22] E. W. Steyerberg et al., “Assessing the performance of prediction models: calibration,” Statistics in Medicine, vol. 29, no. 27, pp. 2869–2884, 2010.
[23] R. F. Wolff et al., “PROBAST: A tool to assess the risk of bias and applicability of prediction model studies,” Annals of Internal Medicine, vol. 170, no. 1, pp. 51–58, 2019.
[24] C. Patrício et al., “Explainable deep learning models in medical imaging: A survey,” ACM Computing Surveys, 2023.
[25] B. N. Green, C. D. Johnson, and A. Adams, “Writing narrative literature reviews for peer-reviewed journals: secrets of the trade,” Journal of Chiropractic Medicine, vol. 5, no. 3, pp. 101–117, 2006.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Fajar Presetya, Mentarry Bafadal, Nurul Muhlisa Mus, Fikri Ramdhani Sahar, Onny Ziasti Fricillia, Pryenalvend Khisanta Piter, Gayuk Kalih Prasesti, Lusy Noviani, Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Fajar Presetya, Lusy Noviani, Saintifikasi Jamu pada Layanan Kesehatan di Rumah Sakit: Kerangka Ilmiah, Tata Kelola Klinis, Keselamatan Pasien, dan Strategi Implementasi Berbasis Bukti , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
Similar Articles
- Devyana Dyah Wulandari, Suprapto Ma'at, Lysa Veterini, Devi Fitriana Sari, Devyani Diah Wulansari, Profil Aktivitas Enzim Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST), dan Alanine Transaminase (ALT) Pada Tikus Hiperlipidemia yang Diberi Madu Fermentasi Bawang Tunggal , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
- Wahyu Widayat, Iffah Karina Ghassani, Laode Rijai, Profil Pengobatan dan DRP’S pada Pasien Ganguan Lambung (Dyspepsia, Gastritis, Peptic Ulcer) Di RSUD Samarinda , Jurnal Sains dan Kesehatan: Vol. 1 No. 10 (2018): J. Sains Kes.
- Aila Johanna, Clemarie Natasha Tholib, Christina Jeanny Soekiono, Nicholas Hardi, Surilena Surilena, Pengaruh Pelatihan Manajemen Pasien dengan Kondisi Gaduh Gelisah terhadap Self-Efficacy Staf Medis dan Non Medis RS Atma Jaya , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Aegirine Rafilah Dahlan, Meiliati Aminyoto, Annisa Muhyi, Profil Elektrolit dan Hematologi Pasien Balita Diare Akut dengan Dehidrasi Ringan-Sedang di RSUD Abdoel Wahab Sjahranie Samarinda , Jurnal Sains dan Kesehatan: Vol. 5 No. 4 (2023): J. Sains Kes.
- Amelia Lorensia, Rivan Virlando Suryadinata, Noer Lailatul Istiqomah, I Nyoman Yoga Diputra, Aktivitas Fisik dan Risiko PPOK pada Pengemudi Becak di Surabaya , Jurnal Sains dan Kesehatan: Vol. 3 No. 5 (2021): J. Sains Kes.
- Nanny Djaja, Christina Jeanny Soekiono, Irene Vanessa, Efek Asam Lemak Omega-3 pada Pemulihan dari Prosedur Kardiovaskular , Jurnal Sains dan Kesehatan: Vol. 6 No. 3 (2025)
- Muhammad Fachrian Akbar, Agustina Rahayu Magdaleni, Hary Nugroho, Endang Sawitri, Arie Ibrahim, Pengaruh Irama Sirkadian Terhadap Memori Jangka Pendek pada Mahasiswa Fakultas Kedokteran Universitas Mulawarman , Jurnal Sains dan Kesehatan: Vol. 3 No. 5 (2021): J. Sains Kes.
- Muh. Rijal Muttaqin, Denny Jeffry Rotinsulu, Sulistiawati Sulistiawati, Hubungan antara Kualitas Tidur dengan Tingkat Stres pada Mahasiswa Fakultas Kedokteran Universitas Mulawarman , Jurnal Sains dan Kesehatan: Vol. 3 No. 4 (2021): J. Sains Kes.
- Flora Ramona Prakoeswa, Peranan Sel Limfosit Dalam Imunulogi: Artikel Review , Jurnal Sains dan Kesehatan: Vol. 2 No. 4 (2020): J. Sains Kes.
- Doni Suryadi, Vera Madonna Lumban Toruan, Fransiska Anggreni Sihotang, Loly Rotua Dharmanita Siagian, Hubungan Jenis Plasmodium falciparum dan Plasmodium vivax dengan Kejadian Anemia pada Pasien Malaria di RSUD Ratu Aji Putri Botung Penajam Paser Utara , Jurnal Sains dan Kesehatan: Vol. 3 No. 2 (2021): J. Sains Kes.
You may also start an advanced similarity search for this article.

