Diagnosis Penyakit Menggunakan Artificial Intelligence (AI):Konsep, Bukti Ilmiah, dan Implikasi Klinis
Disease Diagnosis Using Artificial Intelligence (AI): Concepts, Scientific Evidence, and Clinical Implications
DOI:
https://doi.org/10.30872/jsk.v6i1.976Keywords:
artificial intelligence; disease diagnosis; machine learning; deep learning; clinical decision support; medical imaging; electronic medical recordsAbstract
References
[1] H. Singh, T. D. Giardina, E. N. Meyer, M. Forjuoh, R. D. Reis, and E. J. Thomas, “Types and origins of diagnostic errors in primary care settings,” JAMA Internal Medicine, vol. 173, no. 6, pp. 418–425, 2013.
[2] E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nature Medicine, vol. 25, no. 1, pp. 44–56, 2019.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
[4] G. Campanella et al., “Clinical-grade computational pathology using weakly supervised deep learning on whole-slide images,” Nature Medicine, vol. 25, no. 8, pp. 1301–1309, 2019.
[5] A. Rajkomar et al., “Scalable and accurate deep learning for electronic health records,” npj Digital Medicine, vol. 1, no. 18, 2018.
[6] G. Litjens et al., “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
[7] M. Nagendran et al., “Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims,” BMJ, vol. 368, m689, 2020.
[8] R. Aggarwal et al., “Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis,” npj Digital Medicine, vol. 4, no. 65, 2021.
[9] M. D. Abràmoff et al., “Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices,” npj Digital Medicine, vol. 1, no. 39, 2018.
[10] V. Gulshan et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.
[11] D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nature Medicine, vol. 25, no. 6, pp. 954–961, 2019.
[12] D. A. Bluemke et al., “Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers,” Radiology, vol. 294, no. 3, pp. 487–489, 2020.
[13] S. M. McKinney et al., “International evaluation of an AI system for breast cancer screening,” Nature, vol. 577, pp. 89–94, 2020.
[14] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection with convolutional neural networks,” Nature Medicine, vol. 25, pp. 65–69, 2019.
[15] Z. Obermeyer and E. J. Emanuel, “Predicting the future — Big data, machine learning, and clinical medicine,” New England Journal of Medicine, vol. 375, no. 13, pp. 1216–1219, 2016.
[16] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science, vol. 366, no. 6464, pp. 447–453, 2019.
[17] T. J. Hwang, A. S. Kesselheim, and K. N. Vokinger, “Lifecycle regulation of artificial intelligence–based medical devices,” JAMA, vol. 322, no. 23, pp. 2285–2286, 2019.
[18] X. Liu et al., “CONSORT-AI: Extension of the CONSORT statement for artificial intelligence trials,” BMJ, vol. 370, m3164, 2020.
[19] S. Cruz Rivera et al., “SPIRIT-AI extension for clinical trial protocols,” Nature Medicine, vol. 26, pp. 1351–1363, 2020.
[20] G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. M. Moons, “TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis,” Annals of Internal Medicine, vol. 162, no. 1, pp. 55–63, 2015.
[21] G. S. Collins et al., “TRIPOD+AI: A reporting guideline for clinical prediction models developed using artificial intelligence,” BMJ, vol. 385, e078378, 2024.
[22] E. W. Steyerberg et al., “Assessing the performance of prediction models: calibration,” Statistics in Medicine, vol. 29, no. 27, pp. 2869–2884, 2010.
[23] R. F. Wolff et al., “PROBAST: A tool to assess the risk of bias and applicability of prediction model studies,” Annals of Internal Medicine, vol. 170, no. 1, pp. 51–58, 2019.
[24] C. Patrício et al., “Explainable deep learning models in medical imaging: A survey,” ACM Computing Surveys, 2023.
[25] B. N. Green, C. D. Johnson, and A. Adams, “Writing narrative literature reviews for peer-reviewed journals: secrets of the trade,” Journal of Chiropractic Medicine, vol. 5, no. 3, pp. 101–117, 2006.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Fajar Presetya, Mentarry Bafadal, Nurul Muhlisa Mus, Fikri Ramdhani Sahar, Onny Ziasti Fricillia, Pryenalvend Khisanta Piter, Gayuk Kalih Prasesti, Lusy Noviani, Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Fajar Presetya, Lusy Noviani, Saintifikasi Jamu pada Layanan Kesehatan di Rumah Sakit: Kerangka Ilmiah, Tata Kelola Klinis, Keselamatan Pasien, dan Strategi Implementasi Berbasis Bukti , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
Similar Articles
- Rani Nur Afifah, Muthia Dewi Marthilia Alim, Evaluasi Pola Pengobatan Coronavirus Disease 2019 (Covid-19) pada Ibu Hamil di Rumah Sakit Kota Samarinda , Jurnal Sains dan Kesehatan: Vol. 4 No. 6 (2022): J. Sains Kes.
- Salva Dwi Kosayriyah, Vivin Nur Hafifah, Zainal Munir, Handono Fatkhur Rahman, Analisis Efektifitas Pursed Lip Breathing dan Balloon Blowing untuk Meningkatkan Saturasi Oksigen pada Pasien COPD (Chronic Obstructive Pulmonary Disease) , Jurnal Sains dan Kesehatan: Vol. 3 No. 2 (2021): J. Sains Kes.
- Yeni Tri Utami, Nabilatul Fanny, Faktor Penyebab Perbedaan Selisih Klaim Negatif Tarif Ina-Cbgs dengan Tarif Riil di RSUD Dr. Moewardi , Jurnal Sains dan Kesehatan: Vol. 3 No. 3 (2021): J. Sains Kes.
- Andre Wijaya, Daniel Umar, Hary Nugroho, Gambaran Visum et Repertum (VeR) Perlukaan di Instalasi Kedokteran Forensik dan Medikolegal RSUD Abdul Wahab Sjahranie Samarinda Tahun 2015-2019 , Jurnal Sains dan Kesehatan: Vol. 3 No. 4 (2021): J. Sains Kes.
- Dwi Fitrah Wahyuni, An Nisaa Nurzak, Arifuddin Yunus, Nabilah Baharuddin, Sitti Nur Intang, Pola Pengobatan Covid-19 pada Pasien Komorbid di RSUD dr. La Palaloi , Jurnal Sains dan Kesehatan: Vol. 4 No. 5 (2022): J. Sains Kes.
- Flora Ramona Sigit Prakoeswa, Winda Atika Sari, Penuaan Kulit dan Terapi yang Aman Bagi Geriatri: Artikel Review , Jurnal Sains dan Kesehatan: Vol. 4 No. 5 (2022): J. Sains Kes.
- Mareta Rindang Andarsari, Lisa Ariyanti Zainu, Sri Rahayu Saleh, Aminatush Sholichah, Dewi Wara Shinta, Cahyo Wibisono Nugroho, Quantitative and Qualitative Analysis of Antibiotics in the Intensive Care Unit (ICU) , Jurnal Sains dan Kesehatan: Vol. 5 No. 5 (2023): J. Sains Kes.
- Herlando Sinaga, Ester Rampa, Rini Susanti, Rima Anglia, Screening of Infectious Diseases and Hb Levels at Blood Donor Unit Indonesian Red Cross in Jayapura City Papua , Jurnal Sains dan Kesehatan: Vol. 4 No. 3 (2022): J. Sains Kes.
- Erlin Oktavia, Amelia Lorensia, Rivan Virlando Suryadinata, Pengaruh Jenis dan Pola Konsumsi Makanan yang Mengandung Vitamin D Terkait Gangguan Fungsi Paru pada Tukang Bangunan , Jurnal Sains dan Kesehatan: Vol. 5 No. 5 (2023): J. Sains Kes.
- Alief Fikri Rusdi, Boyke Soebhali, Hary Nugroho, Hubungan Kepadatan Batu Menurut Hounsfield Unit (HU) dengan Komposisi Batu Saluran Kemih di Poli Urologi RSUD Abdul Wahab Sjahranie Samarinda , Jurnal Sains dan Kesehatan: Vol. 4 No. 2 (2022): J. Sains Kes.
You may also start an advanced similarity search for this article.

