Diagnosis Penyakit Menggunakan Artificial Intelligence (AI):Konsep, Bukti Ilmiah, dan Implikasi Klinis
Disease Diagnosis Using Artificial Intelligence (AI): Concepts, Scientific Evidence, and Clinical Implications
DOI:
https://doi.org/10.30872/jsk.v6i1.976Keywords:
artificial intelligence; disease diagnosis; machine learning; deep learning; clinical decision support; medical imaging; electronic medical recordsAbstract
References
[1] H. Singh, T. D. Giardina, E. N. Meyer, M. Forjuoh, R. D. Reis, and E. J. Thomas, “Types and origins of diagnostic errors in primary care settings,” JAMA Internal Medicine, vol. 173, no. 6, pp. 418–425, 2013.
[2] E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nature Medicine, vol. 25, no. 1, pp. 44–56, 2019.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
[4] G. Campanella et al., “Clinical-grade computational pathology using weakly supervised deep learning on whole-slide images,” Nature Medicine, vol. 25, no. 8, pp. 1301–1309, 2019.
[5] A. Rajkomar et al., “Scalable and accurate deep learning for electronic health records,” npj Digital Medicine, vol. 1, no. 18, 2018.
[6] G. Litjens et al., “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
[7] M. Nagendran et al., “Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims,” BMJ, vol. 368, m689, 2020.
[8] R. Aggarwal et al., “Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis,” npj Digital Medicine, vol. 4, no. 65, 2021.
[9] M. D. Abràmoff et al., “Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices,” npj Digital Medicine, vol. 1, no. 39, 2018.
[10] V. Gulshan et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.
[11] D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nature Medicine, vol. 25, no. 6, pp. 954–961, 2019.
[12] D. A. Bluemke et al., “Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers,” Radiology, vol. 294, no. 3, pp. 487–489, 2020.
[13] S. M. McKinney et al., “International evaluation of an AI system for breast cancer screening,” Nature, vol. 577, pp. 89–94, 2020.
[14] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection with convolutional neural networks,” Nature Medicine, vol. 25, pp. 65–69, 2019.
[15] Z. Obermeyer and E. J. Emanuel, “Predicting the future — Big data, machine learning, and clinical medicine,” New England Journal of Medicine, vol. 375, no. 13, pp. 1216–1219, 2016.
[16] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science, vol. 366, no. 6464, pp. 447–453, 2019.
[17] T. J. Hwang, A. S. Kesselheim, and K. N. Vokinger, “Lifecycle regulation of artificial intelligence–based medical devices,” JAMA, vol. 322, no. 23, pp. 2285–2286, 2019.
[18] X. Liu et al., “CONSORT-AI: Extension of the CONSORT statement for artificial intelligence trials,” BMJ, vol. 370, m3164, 2020.
[19] S. Cruz Rivera et al., “SPIRIT-AI extension for clinical trial protocols,” Nature Medicine, vol. 26, pp. 1351–1363, 2020.
[20] G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. M. Moons, “TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis,” Annals of Internal Medicine, vol. 162, no. 1, pp. 55–63, 2015.
[21] G. S. Collins et al., “TRIPOD+AI: A reporting guideline for clinical prediction models developed using artificial intelligence,” BMJ, vol. 385, e078378, 2024.
[22] E. W. Steyerberg et al., “Assessing the performance of prediction models: calibration,” Statistics in Medicine, vol. 29, no. 27, pp. 2869–2884, 2010.
[23] R. F. Wolff et al., “PROBAST: A tool to assess the risk of bias and applicability of prediction model studies,” Annals of Internal Medicine, vol. 170, no. 1, pp. 51–58, 2019.
[24] C. Patrício et al., “Explainable deep learning models in medical imaging: A survey,” ACM Computing Surveys, 2023.
[25] B. N. Green, C. D. Johnson, and A. Adams, “Writing narrative literature reviews for peer-reviewed journals: secrets of the trade,” Journal of Chiropractic Medicine, vol. 5, no. 3, pp. 101–117, 2006.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Fajar Presetya, Mentarry Bafadal, Nurul Muhlisa Mus, Fikri Ramdhani Sahar, Onny Ziasti Fricillia, Pryenalvend Khisanta Piter, Gayuk Kalih Prasesti, Lusy Noviani, Evaluasi Farmakologis dan Toksikologis Ekstrak Etanol Daun Kratom (Mitragyna speciosa) sebagai Kandidat Analgesik Selektif COX-2 dengan Aktivitas Stimulan Sistem Saraf Pusat dan Profil Keamanan Akut pada Mencit , Jurnal Sains dan Kesehatan: Vol. 6 No. 2 (2025)
- Fajar Presetya, Lusy Noviani, Saintifikasi Jamu pada Layanan Kesehatan di Rumah Sakit: Kerangka Ilmiah, Tata Kelola Klinis, Keselamatan Pasien, dan Strategi Implementasi Berbasis Bukti , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
Similar Articles
- Rohmi Pawitra Sari, Denny Jeffry Rotinsulu, Evi Fitriany, Hubungan Indeks Massa Tubuh dan Lingkar Pinggang dengan Kualitas Tidur Mahasiswa Preklinik Program Studi Kedokteran, Fakultas Kedokteran Universitas Mulawarman , Jurnal Sains dan Kesehatan: Vol. 3 No. 3 (2021): J. Sains Kes.
- Gusti Ayu Putu Laksmi Puspa Sari, Coronavirus Disease 2019 (COVID-19): A literature review , Jurnal Sains dan Kesehatan: Vol. 2 No. 4 (2020): J. Sains Kes.
- Maria Angelia Yoshida, Didik Hasmono, Ruddy Hartono, Mohammad Subkhan, Evaluation of Remdesivir in Liver Functions Covid-19 Patients At Bhayangkara H.S Samsoeri Mertojoso Hospital Surabaya , Jurnal Sains dan Kesehatan: Vol. 4 No. 5 (2022): J. Sains Kes.
- Oriza Safrini, Dian Ratih Laksmitawati, Hesty Utami Ramadaniati, Pengaruh Penerapan Clinical Pathway pada Peresepan Antibiotik Pasien Tifoid Anak di Rumah Sakit Swasta X Kota Bogor , Jurnal Sains dan Kesehatan: Vol. 5 No. 4 (2023): J. Sains Kes.
- Jamil Anshory, Aulia Dwi Nur Anggraini, Satriani Satriani, Protein Intake, Nutritional Status, and Family Socioeconomic Relationships with Learning Achievement of Children Aged 13-15 Years at Nabil Husein Junior High School Samarinda Year 2022 , Jurnal Sains dan Kesehatan: Vol. 5 No. 1 (2023): J. Sains Kes.
- Satiya Ningsih, Yuni Andriani, Rahmadevi Rahmadevi, Penggunaan Antibiotik Restriksi pada Pasien Ulkus, Abses dan Batu Kandung Kemih di Bangsal Bedah RSUD H. Abdul Manap Kota Jambi Periode 2017-2019 , Jurnal Sains dan Kesehatan: Vol. 3 No. 3 (2021): J. Sains Kes.
- Sidhi Laksono, Yogi Subandra, Diseksi Spontan Arteri Koroner: Diagnosis dan Manajemen , Jurnal Sains dan Kesehatan: Vol. 5 No. 1 (2023): J. Sains Kes.
- Ni Nyoman Mestri Agustini, Made Kurnia Widiastuti Giri, Knowledge and Perception of Hebal Medicine Competencies Among First Year Medical Students , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
- Aliya Khadijah Kemaleratu, Yuliana Rahmah Retnaningrum, Yudanti Riastiti, Tingkat Keberhasilan Terapi Radioiodin Pertama pada Pasien Graves’ Disease , Jurnal Sains dan Kesehatan: Vol. 6 No. 1 (2025)
- Sri Jatul Zannah, Ignatia Sinta Murti, Sulistiawati Sulistiawati, Hubungan Usia dengan Stadium Saat Diagnosis Penderita Kanker Kolorektal di RSUD Abdul Wahab Sjahranie Samarinda , Jurnal Sains dan Kesehatan: Vol. 3 No. 5 (2021): J. Sains Kes.
You may also start an advanced similarity search for this article.

